Interplay between local quantum randomness and non-local information access

Quantum randomness is considered to be potentially an important resource for information processing. Quantum randomness stems from quantum coherence, whose information-theoretic characterization is currently under investigation. In this work, we link the quantum randomness of a measurement with a particular notion of coherence. We show that the quantum randomness of a local measurement corresponds to the minimum amount of uncertainty about the outcome experienced by a correlated party. The relation between local quantum randomness and quantum correlations is discussed. We observe that the local quantum randomness on one party corresponds to the bits to be sent to a correlated receiver to unlock hidden data.

[1]  Robert König,et al.  The Operational Meaning of Min- and Max-Entropy , 2008, IEEE Transactions on Information Theory.

[2]  M. N. Bera,et al.  Entanglement and Coherence in Quantum State Merging. , 2016, Physical review letters.

[3]  Shengjun Wu,et al.  Correlations in local measurements on a quantum state, and complementarity as an explanation of nonclassicality , 2009, 0905.2123.

[4]  Marco Tomamichel,et al.  Quantum Information Processing with Finite Resources - Mathematical Foundations , 2015, ArXiv.

[5]  V. Vedral,et al.  Quantum processes which do not use coherence , 2015, 1512.02085.

[6]  Xing Xiao,et al.  Quantum coherence in multipartite systems , 2015, 1506.01773.

[7]  Animesh Datta,et al.  Signatures of nonclassicality in mixed-state quantum computation , 2008, 0811.4003.

[8]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[9]  V. Vedral The role of relative entropy in quantum information theory , 2001, quant-ph/0102094.

[10]  Yunchao Liu,et al.  Quantum coherence via conditional entropy , 2017, Journal of Physics A: Mathematical and Theoretical.

[11]  Patrick J. Coles Unification of different views of decoherence and discord , 2011, 1110.1664.

[12]  M. Plenio,et al.  Colloquium: quantum coherence as a resource , 2016, 1609.02439.

[13]  Maciej Lewenstein,et al.  Towards Resource Theory of Coherence in Distributed Scenarios , 2015, 1509.07456.

[14]  Adam Paszkiewicz,et al.  On quantum information , 2012, ArXiv.

[15]  Davide Girolami,et al.  Characterizing nonclassical correlations via local quantum uncertainty. , 2012, Physical review letters.

[16]  Zhu Cao,et al.  Loss-tolerant measurement-device-independent quantum random number generation , 2015, 1510.08960.

[17]  Xiongfeng Ma,et al.  Intrinsic randomness as a measure of quantum coherence , 2015, 1505.04032.

[18]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[19]  Davide Girolami,et al.  Converting Coherence to Quantum Correlations. , 2015, Physical review letters.

[20]  Hugh Everett,et al.  The Theory of the Universal Wave Function , 2015 .

[21]  Ming‐Liang Hu,et al.  Relative quantum coherence, incompatibility, and quantum correlations of states , 2016, 1610.05413.

[22]  Miguel Herrero-Collantes,et al.  Quantum random number generators , 2016, 1604.03304.

[23]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[24]  Gerardo Adesso,et al.  Measuring Quantum Coherence with Entanglement. , 2015, Physical review letters.

[25]  Eric Chitambar,et al.  Relating the Resource Theories of Entanglement and Quantum Coherence. , 2015, Physical review letters.

[26]  Roger Colbeck,et al.  Quantum And Relativistic Protocols For Secure Multi-Party Computation , 2009, 0911.3814.

[27]  Seth Lloyd,et al.  Quantum enigma machines and the locking capacity of a quantum channel , 2013, ArXiv.

[28]  R. Spekkens,et al.  How to quantify coherence: Distinguishing speakable and unspeakable notions , 2016, 1602.08049.

[29]  M. Horodecki,et al.  Locking classical correlations in quantum States. , 2003, Physical review letters.

[30]  A. Winter,et al.  Operational Resource Theory of Coherence. , 2015, Physical review letters.

[31]  L. Aolita,et al.  QUANTUM LOCKING OF CLASSICAL CORRELATIONS AND QUANTUM DISCORD OF CLASSICAL-QUANTUM STATES , 2011, 1105.2768.

[32]  Yi Peng,et al.  Quantum coherence and geometric quantum discord , 2017, Physics Reports.

[33]  Xiongfeng Ma,et al.  One-Shot Coherence Dilution. , 2017, Physical review letters.

[34]  G. Adesso,et al.  One-Shot Coherence Distillation. , 2017, Physical review letters.

[35]  Stephen M. Barnett,et al.  Quantum information , 2005, Acta Physica Polonica A.

[36]  Masahito Hayashi,et al.  Secure uniform random number extraction via incoherent strategies , 2017, ArXiv.

[37]  A quantum measure of coherence and incompatibility , 2005, quant-ph/0503077.

[38]  T. Paterek,et al.  The classical-quantum boundary for correlations: Discord and related measures , 2011, 1112.6238.