Nonlinear evolution of baryon acoustic oscillations from improved perturbation theory in real and redshift spaces

We study the nonlinear evolution of baryon acoustic oscillations in the matter power spectrum and correlation function from the improved perturbation theory (PT). Based on the framework of renormalized PT, which provides a nonperturbative way to treat the gravitational clustering of large-scale structure, we apply the closure approximation that truncates the infinite series of loop contributions at one-loop order, and obtain a closed set of integral equations for power spectrum and nonlinear propagator. The resultant integral expressions are basically equivalent to those previously derived in the form of evolution equations, and they keep important nonperturbative properties which can dramatically improve the prediction of nonlinear power spectrum. Employing the Born approximation, we then derive the analytic expressions for nonlinear power spectrum and the predictions are made for nonlinear evolution of baryon acoustic oscillations in power spectrum and correlation function. We find that the improved PT possesses a better convergence property compared with standard PT calculation. A detailed comparison between improved PT results and N-body simulations shows that a percent-level agreement is achieved in a certain range in power spectrum and in a rather wider range in correlation function. Combining a model of nonlinear redshift-space distortion, we also evaluate the power spectrummore » and correlation function in redshift space. In contrast to the results in real space, the agreement between N-body simulations and improved PT predictions tends to be worse, and a more elaborate modeling for redshift-space distortion needs to be developed. Nevertheless, with the currently existing model, we find that the prediction of correlation function has a sufficient accuracy compared with the cosmic-variance errors for future galaxy surveys with volume of a few h{sup -3} Gpc{sup 3} at z > or approx. 0.5.« less

[1]  Baryonic Acoustic Oscillations in Simulated Galaxy Redshift Surveys , 2005, astro-ph/0507338.

[2]  Y. Jing,et al.  Modeling Nonlinear Evolution of Baryon Acoustic Oscillations: Convergence Regime of $N$-body Simulations and Analytic Models , 2008, 0810.0813.

[3]  J. A. PeacockS.J. Dodds,et al.  Reconstructing the linear power spectrum of cosmological mass fluctuations , 1993, astro-ph/9311057.

[4]  Martin White,et al.  Testing cosmological structure formation using redshift-space distortions , 2008, 0808.0003.

[5]  C. Leith,et al.  Developments in the theory of turbulence , 1973 .

[6]  N. Yoshida,et al.  SIMULATIONS OF BARYON ACOUSTIC OSCILLATIONS. II. COVARIANCE MATRIX OF THE MATTER POWER SPECTRUM , 2009, 0902.0371.

[7]  Bispectrum and Nonlinear Biasing of Galaxies: Perturbation Analysis, Numerical Simulation, and SDSS Galaxy Clustering , 2006, astro-ph/0609740.

[8]  W. H. Reid,et al.  On the decay of a normally distributed and homogenous turbulent velocity field , 1954, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[9]  Roman Scoccimarro Redshift-space distortions, pairwise velocities and nonlinearities , 2004 .

[10]  J. Fry The Minimal Power Spectrum: Higher Order Contributions , 1994 .

[11]  R. Nichol,et al.  Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies , 2005, astro-ph/0501171.

[12]  V. Springel The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.

[13]  Eiichiro Komatsu,et al.  PERTURBATION THEORY RELOADED. II. NONLINEAR BIAS, BARYON ACOUSTIC OSCILLATIONS, AND MILLENNIUM SIMULATION IN REAL SPACE , 2008, 0805.2632.

[14]  N. Kaiser Clustering in real space and in redshift space , 1987 .

[15]  P. Valageas Large-N expansions applied to gravitational clustering , 2006, astro-ph/0611849.

[16]  Edward J. Wollack,et al.  First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Determination of cosmological parameters , 2003, astro-ph/0302209.

[17]  David Higdon,et al.  THE COYOTE UNIVERSE. II. COSMOLOGICAL MODELS AND PRECISION EMULATION OF THE NONLINEAR MATTER POWER SPECTRUM , 2009, 0902.0429.

[18]  M. Zaldarriaga,et al.  Power Spectrum Correlations Induced by Nonlinear Clustering , 1999, astro-ph/9901099.

[19]  T. Tatsumi The theory of decay process of incompressible isotropic turbulence , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[20]  A. Lewis,et al.  Nonlinear redshift-space power spectra , 2008, 0808.1724.

[21]  Loop Corrections in Nonlinear Cosmological Perturbation Theory. II. Two-Point Statistics and Self-Similarity , 1996, astro-ph/9602070.

[22]  G. Bernstein The Variance of Correlation Function Estimates , 1994 .

[23]  The non-linear redshift-space power spectrum of galaxies , 1998, astro-ph/9808016.

[24]  Thomas Hahn,et al.  Cuba - a library for multidimensional numerical integration , 2004, Comput. Phys. Commun..

[25]  Changbom Park,et al.  Power spectrum, correlation function, and tests for luminosity bias in the CfA redshift survey , 1994 .

[26]  N. Yoshida,et al.  Simulations of baryon acoustic oscillations – I. Growth of large-scale density fluctuations , 2008, 0802.1808.

[27]  M. Crocce,et al.  Nonlinear evolution of baryon acoustic oscillations , 2007, 0704.2783.

[28]  Small scale cosmological perturbations: An Analytic approach , 1995, astro-ph/9510117.

[29]  S. Matarrese,et al.  Resumming cosmic perturbations , 2007, astro-ph/0703563.

[30]  T. Hiramatsu,et al.  Chasing the nonlinear evolution of matter power spectrum with a numerical resummation method: Solution of closure equations , 2009, 0902.3772.

[31]  J. Lesgourgues,et al.  Non-linear power spectrum including massive neutrinos: the time-RG flow approach , 2009, 0901.4550.

[32]  K. Koyama The cosmological constant and dark energy in braneworlds , 2007, 0706.1557.

[33]  K. Koyama,et al.  Non-linear Evolution of Matter Power Spectrum in Modified Theory of Gravity , 2009, 0902.0618.

[34]  G. Huetsi Acoustic oscillations in the SDSS DR4 luminous red galaxy sample power spectrum , 2005, astro-ph/0507678.

[35]  M. Pietroni,et al.  Flowing with time: a new approach to non-linear cosmological perturbations , 2008, 0806.0971.

[36]  T. Hiramatsu,et al.  A Closure Theory for Nonlinear Evolution of Cosmological Power Spectra , 2007, 0708.1367.

[37]  S. Rey,et al.  Coupling of Modes of Cosmological Mass Density Fluctuations , 1986 .

[38]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE * OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[39]  Patrick McDonald Dark matter clustering: a simple renormalization group approach , 2007 .

[40]  T. Matsubara Nonlinear perturbation theory with halo bias and redshift-space distortions via the Lagrangian picture , 2008, 0807.1733.

[41]  J. Peacock,et al.  Stable clustering, the halo model and non-linear cosmological power spectra , 2002, astro-ph/0207664.

[42]  Scale Dependence of Halo and Galaxy Bias: Effects in Real Space , 2006, astro-ph/0609547.

[43]  The growth of correlations in the matter power spectrum , 1998, astro-ph/9812129.

[44]  A. Starobinsky Disappearing cosmological constant in f(R) gravity , 2007, 0706.2041.

[45]  Fourier analysis of redshift-space distortions and the determination of Ω , 1993, astro-ph/9308003.

[46]  A. Lewis,et al.  Efficient computation of CMB anisotropies in closed FRW models , 1999, astro-ph/9911177.

[47]  Patrick McDonald,et al.  Clustering of dark matter tracers: generalizing bias for the coming era of precision LSS , 2009, 0902.0991.

[48]  T. Matsubara,et al.  Resumming Cosmological Perturbations via the Lagrangian Picture: One-loop Results in Real Space and in Redshift Space , 2007, 0711.2521.

[49]  R. Nichol,et al.  Cosmological parameters from SDSS and WMAP , 2003, astro-ph/0310723.

[50]  Martin White,et al.  Critical look at cosmological perturbation theory techniques , 2009, 0905.0479.

[51]  Baryonic signatures in Large-Scale Structure , 1998, astro-ph/9812214.

[52]  R. Smith,et al.  Motion of the Acoustic Peak in the Correlation Function , 2007, astro-ph/0703620.

[53]  K. Izumi,et al.  Renormalized Newtonian cosmic evolution with primordial non-Gaussianity , 2007, 0706.1604.

[54]  David Higdon,et al.  Cosmic calibration: Constraints from the matter power spectrum and the cosmic microwave background , 2007 .

[55]  What is the best way to measure baryonic acoustic oscillations , 2008, 0804.0233.

[56]  Sasaki,et al.  Analytic approach to the perturbative expansion of nonlinear gravitational fluctuations in cosmological density and velocity fields. , 1992, Physical review. D, Particles and fields.

[57]  Hee-Jong SeoDaniel J. Eisenstein Probing Dark Energy with Baryonic Acoustic Oscillations from Future Large Galaxy Redshift Surveys , 2003 .

[58]  Wayne Hu,et al.  Models of f(R) Cosmic Acceleration that Evade Solar-System Tests , 2007, 0705.1158.

[59]  S. Colombi,et al.  Large scale structure of the universe and cosmological perturbation theory , 2001, astro-ph/0112551.

[60]  R. Nichol,et al.  Cosmological constraints from the SDSS luminous red galaxies , 2006, astro-ph/0608632.

[61]  Sasaki,et al.  Quasinonlinear theory of cosmological self-gravitating systems. , 1991, Physical review letters.

[62]  P. Valageas A new approach to gravitational clustering: A path-integral formalism and large-N expansions , 2004 .

[63]  R. Ellis,et al.  Measurements of $\Omega$ and $\Lambda$ from 42 high redshift supernovae , 1998, astro-ph/9812133.

[64]  M. Crocce,et al.  Renormalized cosmological perturbation theory , 2006 .

[65]  D. Eisenstein,et al.  On the Robustness of the Acoustic Scale in the Low-Redshift Clustering of Matter , 2006, astro-ph/0604361.

[67]  Measuring the cosmological constant with redshift surveys , 1996, astro-ph/9605017.

[68]  Wayne Hu,et al.  Baryonic Features in the Matter Transfer Function , 1997, astro-ph/9709112.

[69]  M. Crocce,et al.  Memory of initial conditions in gravitational clustering , 2006 .

[70]  R. Durrer,et al.  Dark energy and dark gravity: theory overview , 2007, 0711.0077.

[71]  Xin Wang,et al.  Forecasting the dark energy measurement with baryon acoustic oscillations: prospects for the LAMOST surveys , 2008, 0809.3002.

[72]  M. Phillips,et al.  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.

[73]  M. Crocce,et al.  Transients from initial conditions in cosmological simulations , 2006, astro-ph/0606505.

[74]  R. Ellis,et al.  The 2dF Galaxy Redshift Survey: power-spectrum analysis of the final data set and cosmological implications , 2005, astro-ph/0501174.

[75]  Stochastic Biasing and Weakly Nonlinear Evolution of Power Spectrum , 1999, astro-ph/9909124.

[76]  Andrew J. Connolly,et al.  Measuring the Matter Density Using Baryon Oscillations in the SDSS , 2006, astro-ph/0608635.

[77]  Patrick McDonald Clustering of dark matter tracers: Renormalizing the bias parameters , 2006 .

[78]  E. Gaztañaga,et al.  The three-point function in large-scale structure – I. The weakly non-linear regime in N-body simulations , 2001 .

[79]  Y. Suto,et al.  Characteristic Scales of Baryon Acoustic Oscillations from Perturbation Theory: Nonlinearity and Redshift-Space Distortion Effects , 2007, 0705.1589.