Improving biorefinery planning: Integration of spatial data using exact optimization nested in an evolutionary strategy

Biorefineries can provide a product portfolio from renewable biomass similar to that of crude oil refineries. To operate biorefineries of any kind, however, the availability of biomass inputs is crucial and must be considered during planning. Here, we develop a planning approach that uses Geographic Information Systems (GIS) to account for spatially scattered biomass when optimizing a biorefinery’s location, capacity, and configuration. To deal with the challenges of a non-smooth objective function arising from the geographic data, higher dimensionality, and strict constraints, the planning problem is repeatedly decomposed by nesting an exact nonlinear program (NLP) inside an evolutionary strategy (ES) heuristic, which handles the spatial data from the GIS. We demonstrate the functionality of the algorithm and show how including spatial data improves the planning process by optimizing a synthesis gas biorefinery using this new planning approach.

[1]  Ilias P. Tatsiopoulos,et al.  Locating a bioenergy facility using a hybrid optimization method , 2010 .

[2]  Rommel G. Regis,et al.  Convergence guarantees for generalized adaptive stochastic search methods for continuous global optimization , 2010, Eur. J. Oper. Res..

[3]  Mark S. Daskin,et al.  Strategic facility location: A review , 1998, Eur. J. Oper. Res..

[4]  Daryl Essam,et al.  Decomposition-based evolutionary algorithm for large scale constrained problems , 2015, Inf. Sci..

[5]  Michael Obersteiner,et al.  Optimal location of wood gasification plants for methanol production with heat recovery , 2008 .

[6]  M. Dry,et al.  Chemical concepts used for engineering purposes , 2004 .

[7]  Mahmoud M. El-Halwagi,et al.  Optimal planning and site selection for distributed multiproduct biorefineries involving economic, environmental and social objectives. , 2014 .

[8]  Frank Reinicke,et al.  Basisinformationen für eine nachhaltige Nutzung von landwirtschaftlichenReststoffen zur Bioenergiebereitstellung , 2014 .

[9]  Shih-Cheng Horng,et al.  Embedding evolutionary strategy in ordinal optimization for hard optimization problems , 2012 .

[10]  Valentin Parmon,et al.  Sustainable Strategies for the Upgrading of Natural Gas: Fundamentals, Challenges, and Opportunities , 2005 .

[11]  Jay H. Lee,et al.  Optimal design and global sensitivity analysis of biomass supply chain networks for biofuels under uncertainty , 2011, Comput. Chem. Eng..

[12]  Joshua A. Schaidle,et al.  Biorefinery sustainability assessment , 2011 .

[13]  Dana M. Johnson,et al.  A GIS-based method for identifying the optimal location for a facility to convert forest biomass to biofuel , 2011 .

[14]  Nicolás Ruiz-Reyes,et al.  A Honey Bee Foraging approach for optimal location of a biomass power plant , 2010 .

[15]  Thomas Spengler,et al.  Design of regional production networks for second generation synthetic bio-fuel - A case study in Northern Germany , 2012, Eur. J. Oper. Res..

[16]  Sandeep Kumar,et al.  Memetic Search in Differential Evolution Algorithm , 2014, ArXiv.

[17]  Christian Prins,et al.  Models for optimization and performance evaluation of biomass supply chains: An Operations Research perspective , 2016 .

[18]  Shaowen Wang,et al.  CyberGIS-enabled decision support platform for biomass supply chain optimization , 2015, Environ. Model. Softw..

[19]  Hiroyuki Kazuyoshi An Approximation Algorithm for a Large-Scale Facility Location Problem , 2003, Algorithmica.

[20]  Jack Brimberg,et al.  Estimation of travel distances with the weighted ℓp norm: Some empirical results , 2007 .

[21]  Paul Stuart,et al.  Integrating product portfolio design and supply chain design for the forest biorefinery , 2010, Comput. Chem. Eng..

[22]  Lijun Wang,et al.  Mathematical modeling of production and biorefinery of energy crops , 2015 .

[23]  A. E. Eiben,et al.  Introduction to Evolutionary Computing , 2003, Natural Computing Series.

[24]  Horst A. Eiselt,et al.  Location analysis: A synthesis and survey , 2005, Eur. J. Oper. Res..

[25]  D. Blackwood,et al.  GIS-based location suitability of decentralized, medium scale bioenergy developments to estimate transport CO2 emissions and costs , 2012 .

[26]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[27]  S. Bröring,et al.  The emerging research landscape on bioeconomy: What has been done so far and what is essential from a technology and innovation management perspective? , 2015 .

[28]  Xiaodong Li,et al.  Designing benchmark problems for large-scale continuous optimization , 2015, Inf. Sci..

[29]  Wei Chu,et al.  A new evolutionary search strategy for global optimization of high-dimensional problems , 2011, Inf. Sci..

[30]  John W. Sutherland,et al.  A cost model for forest-based biofuel production and its application to optimal facility size determination , 2014 .

[31]  José A. Romagnoli,et al.  A modeling framework for design of nonlinear renewable energy systems through integrated simulation modeling and metaheuristic optimization: Applications to biorefineries , 2014, Comput. Chem. Eng..

[32]  Luis F. Rodriguez,et al.  GIS‐enabled biomass‐ethanol supply chain optimization: model development and Miscanthus application , 2013 .

[33]  F. Chittenden,et al.  Uncertainty, irreversibility and the use of ‘rules of thumb’ in capital budgeting , 2015 .

[34]  Kaija Hakala,et al.  Field biomass as global energy source , 2009 .

[35]  Valeria Borodin,et al.  Handling uncertainty in agricultural supply chain management: A state of the art , 2016, Eur. J. Oper. Res..

[36]  Aldo R. Vecchietti,et al.  Optimal design for sustainable bioethanol supply chain considering detailed plant performance model , 2011, Comput. Chem. Eng..

[37]  P. Balachandra,et al.  A GIS (geographical information system)-based spatial data mining approach for optimal location and capacity planning of distributed biomass power generation facilities: A case study of Tumkur district, India , 2013 .

[38]  Matthew J. Realff,et al.  Design of biomass processing network for biofuel production using an MILP model , 2011 .

[39]  Ian McCallum,et al.  Optimal location of lignocellulosic ethanol refineries with polygeneration in Sweden. , 2010 .

[40]  Bryant A. Julstrom Comparing Darwinian, Baldwinian, and Lamarckian Search in a Genetic Algorithm for the 4-Cycle Proble , 1999 .

[41]  Nicolás Ruiz-Reyes,et al.  Comparison of metaheuristic techniques to determine optimal placement of biomass power plants , 2009 .

[42]  Alexis J. Comber,et al.  Locating bioenergy facilities using a modified GIS-based location–allocation-algorithm: Considering the spatial distribution of resource supply , 2015 .

[43]  Mario A. Muñoz,et al.  Algorithm selection for black-box continuous optimization problems: A survey on methods and challenges , 2015, Inf. Sci..

[44]  Klaus D. Timmerhaus,et al.  Plant design and economics for chemical engineers , 1958 .

[45]  A. Faaij,et al.  Exploration of the possibilities for production of Fischer Tropsch liquids and power via biomass gasification , 2002 .

[46]  Robert H. Williams,et al.  Fischer-Tropsch Fuels from Coal and Biomass , 2008 .

[47]  Jutta Geldermann,et al.  Supply planning for processors of agricultural raw materials , 2015, Eur. J. Oper. Res..

[48]  José A. Romagnoli,et al.  Strategic value optimization and analysis of multi-product biomass refineries with multiple stakeholder considerations , 2013, Comput. Chem. Eng..

[49]  René Thomsen,et al.  Flexible ligand docking using evolutionary algorithms: investigating the effects of variation operators and local search hybrids. , 2003, Bio Systems.

[50]  Lars-Peter Lauven,et al.  An optimization approach to biorefinery setup planning , 2014 .

[51]  K. Hiscock,et al.  A GIS based assessment of bioenergy potential in England within existing energy systems , 2013 .

[52]  Joseph B. Binder,et al.  Conversion of biomass to sugars via ionic liquid hydrolysis: process synthesis and economic evaluation , 2012 .

[53]  Paavo Pelkonen,et al.  Optimal locations for second generation Fischer Tropsch biodiesel production in Finland , 2014 .

[54]  Mahmoud M. El-Halwagi,et al.  A shortcut method for the preliminary synthesis of process-technology pathways: An optimization approach and application for the conceptual design of integrated biorefineries , 2011, Comput. Chem. Eng..

[55]  Stefan Seuring,et al.  Supply chain and logistics issues of bio-energy production. , 2011 .

[56]  Dr. Zbigniew Michalewicz,et al.  How to Solve It: Modern Heuristics , 2004 .

[57]  Shahryar Rahnamayan,et al.  Metaheuristics in large-scale global continues optimization: A survey , 2015, Inf. Sci..

[58]  Robert F. Love,et al.  On estimating road distances by mathematical functions , 1988 .

[59]  Francisco Saldanha-da-Gama,et al.  Facility location and supply chain management - A review , 2009, Eur. J. Oper. Res..

[60]  Nikolaos V. Sahinidis,et al.  A polyhedral branch-and-cut approach to global optimization , 2005, Math. Program..

[61]  M. Kaltschmitt,et al.  Energie aus Biomasse: Grundlagen, Techniken und Verfahren , 2001 .

[62]  K. McCormick,et al.  Strategies and Policies for the Bioeconomy and Bio-Based Economy: An Analysis of Official National Approaches , 2013 .

[63]  René Thomsen,et al.  A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).