Local asymptotic normality in a stationary model for spatial extremes

De Haan and Pereira (2006) [6] provided models for spatial extremes in the case of stationarity, which depend on just one parameter @b>0 measuring tail dependence, and they proposed different estimators for this parameter. We supplement this framework by establishing local asymptotic normality (LAN) of a corresponding point process of exceedances above a high multivariate threshold. Standard arguments from LAN theory then provide the asymptotic minimum variance within the class of regular estimators of @b. It turns out that the relative frequency of exceedances is a regular estimator sequence with asymptotic minimum variance, if the underlying observations follow a multivariate extreme value distribution or a multivariate generalized Pareto distribution.

[1]  S. Resnick Heavy-Tail Phenomena: Probabilistic and Statistical Modeling , 2006 .

[2]  N. Ng,et al.  Extreme values of ζ′(ρ) , 2007, 0706.1765.

[3]  L. de Haan,et al.  A Spectral Representation for Max-stable Processes , 1984 .

[4]  L. Haan,et al.  Almost Sure Continuity of Stable Moving Average Processes with Index Less Than One , 1988 .

[5]  L. de Haan,et al.  Stationary min-stable stochastic processes , 1986 .

[6]  H. Joe Multivariate extreme value distributions , 1997 .

[7]  Laurens de Haan,et al.  Spatial extremes: Models for the stationary case , 2006 .

[8]  L. Haan,et al.  On convergence toward an extreme value distribution in C[0,1] , 2001 .

[9]  N. Tajvidi,et al.  Multivariate Generalized Pareto Distributions , 2006 .

[10]  M. Falk LOCAL ASYMPTOTIC NORMALITY OF TRUNCATED EMPIRICAL PROCESSES , 1998 .

[11]  L. L. Cam,et al.  Asymptotic Methods In Statistical Decision Theory , 1986 .

[12]  J. Hüsler,et al.  Laws of Small Numbers: Extremes and Rare Events , 1994 .

[13]  T. N. Sriram Asymptotics in Statistics–Some Basic Concepts , 2002 .

[14]  L. Haan,et al.  Extreme value theory : an introduction , 2006 .

[15]  Michael Thomas,et al.  Statistical Analysis of Extreme Values , 2008 .

[16]  Paul Deheuvels,et al.  Point processes and multivariate extreme values , 1983 .

[17]  Sidney I. Resnick,et al.  Heavy-tail phenomen , 2013 .

[18]  J. Teugels,et al.  Statistics of Extremes , 2004 .

[19]  P. Hall On Some Simple Estimates of an Exponent of Regular Variation , 1982 .

[20]  Rolf-Dieter Reiss,et al.  A Course on Point Processes , 1992 .

[21]  James V. Bondar,et al.  Mathematical theory of statistics , 1985 .