Effect of BRAFV600E mutation on transcription and post-transcriptional regulation in a papillary thyroid carcinoma model

[1]  J. M. Thomson,et al.  Micro‐RNAs as Oncogenes and Tumour Suppressors , 2007 .

[2]  George P Cobb,et al.  microRNAs as oncogenes and tumor suppressors. , 2007, Developmental biology.

[3]  O. Sheils,et al.  Effect of ret/PTC 1 rearrangement on transcription and post-transcriptional regulation in a papillary thyroid carcinoma model , 2006, Molecular Cancer.

[4]  Todd A. Anderson,et al.  Computational identification of microRNAs and their targets , 2006, Comput. Biol. Chem..

[5]  Stefano Volinia,et al.  MicroRNA expression abnormalities in pancreatic endocrine and acinar tumors are associated with distinctive pathologic features and clinical behavior. , 2006, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[6]  X. Agirre,et al.  Identification by Real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues , 2006, Molecular Cancer.

[7]  Peter A. Jones,et al.  Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. , 2006, Cancer cell.

[8]  C. Croce,et al.  MicroRNA deregulation in human thyroid papillary carcinomas. , 2006, Endocrine-related cancer.

[9]  T. Okanoue,et al.  Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues , 2006, Oncogene.

[10]  F. Slack,et al.  Oncomirs — microRNAs with a role in cancer , 2006, Nature Reviews Cancer.

[11]  S. Asa,et al.  Pathogenetic mechanisms in thyroid follicular-cell neoplasia , 2006, Nature Reviews Cancer.

[12]  Brian S. Roberts,et al.  The colorectal microRNAome. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[13]  R. Stephens,et al.  Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. , 2006, Cancer cell.

[14]  J. Mendell,et al.  MicroRNAs in cell proliferation, cell death, and tumorigenesis , 2006, British Journal of Cancer.

[15]  C. Croce,et al.  A microRNA expression signature of human solid tumors defines cancer gene targets , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Stijn van Dongen,et al.  miRBase: microRNA sequences, targets and gene nomenclature , 2005, Nucleic Acids Res..

[17]  C. Croce,et al.  The role of microRNA genes in papillary thyroid carcinoma. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[18]  C. Croce,et al.  MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[19]  C. Croce,et al.  MicroRNAs 221 and 222 Inhibit Normal Erythropoiesis and Erythroleukemic Cell Growth Via Kit Receptor Downmodulation. , 2005 .

[20]  O. Sheils Molecular classification and biomarker discovery in papillary thyroid carcinoma , 2005, Expert review of molecular diagnostics.

[21]  E. Miska,et al.  How microRNAs control cell division, differentiation and death. , 2005, Current opinion in genetics & development.

[22]  C. Croce,et al.  miR-15 and miR-16 induce apoptosis by targeting BCL2. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[23]  G. Maira,et al.  Extensive modulation of a set of microRNAs in primary glioblastoma. , 2005, Biochemical and biophysical research communications.

[24]  C. Croce,et al.  MicroRNA gene expression deregulation in human breast cancer. , 2005, Cancer research.

[25]  H. Horvitz,et al.  MicroRNA expression profiles classify human cancers , 2005, Nature.

[26]  M. Xing,et al.  BRAF mutation in thyroid cancer. , 2005, Endocrine-related cancer.

[27]  K. Gunsalus,et al.  Combinatorial microRNA target predictions , 2005, Nature Genetics.

[28]  J. Fagin,et al.  Conditional BRAFV600E expression induces DNA synthesis, apoptosis, dedifferentiation, and chromosomal instability in thyroid PCCL3 cells. , 2005, Cancer research.

[29]  F. Slack,et al.  RAS Is Regulated by the let-7 MicroRNA Family , 2005, Cell.

[30]  D. Bartel,et al.  Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. , 2005, RNA.

[31]  Krzysztof Fujarewicz,et al.  Gene expression profile of papillary thyroid cancer: sources of variability and diagnostic implications. , 2005, Cancer research.

[32]  O. Sheils,et al.  ret/PTC and BRAF Act as Distinct Molecular, Time-Dependant Triggers in a Sporadic Irish Cohort of Papillary Thyroid Carcinoma , 2005, International journal of surgical pathology.

[33]  C. Croce,et al.  MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[34]  C. Croce,et al.  An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[35]  C. Croce,et al.  Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[36]  C. Burge,et al.  Prediction of Mammalian MicroRNA Targets , 2003, Cell.

[37]  M. Nikiforova,et al.  BRAF mutations in thyroid tumors are restricted to papillary carcinomas and anaplastic or poorly differentiated carcinomas arising from papillary carcinomas. , 2003, The Journal of clinical endocrinology and metabolism.

[38]  Michael Z Michael,et al.  Reduced accumulation of specific microRNAs in colorectal neoplasia. , 2003, Molecular cancer research : MCR.

[39]  C Eng,et al.  Gene expression in papillary thyroid carcinoma reveals highly consistent profiles , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Thomas D. Schmittgen,et al.  Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. , 2001, Methods.

[41]  V. Ambros,et al.  The timing of lin-4 RNA accumulation controls the timing of postembryonic developmental events in Caenorhabditis elegans. , 1999, Developmental biology.

[42]  V. Ambros,et al.  The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 , 1993, Cell.

[43]  T. Fahey,et al.  0021-972X/04/$15.00/0 The Journal of Clinical Endocrinology & Metabolism 89(7):3214–3223 Printed in U.S.A. Copyright © 2004 by The Endocrine Society doi: 10.1210/jc.2003-031811 Molecular Profiling Distinguishes Papillary Carcinoma , 2022 .