Optimal Mean-Square Noise Benefits in Quantizer-Array Linear Estimation

A new theorem shows that additive quantizer noise decreases the mean-squared error of threshold-array optimal and suboptimal linear estimators. The initial rate of this noise benefit improves as the number of threshold sensors or quantizers increases. The array sums the outputs of identical binary quantizers that receive the same random input signal. The theorem further shows that zero-symmetric uniform quantizer noise gives the fastest initial decrease in mean-squared error among all finite-variance zero-symmetric scale-family noise. These results apply to all bounded continuous signal densities and all zero-symmetric scale-family quantizer noise with finite variance.

[1]  Gerald B. Folland,et al.  Real Analysis: Modern Techniques and Their Applications , 1984 .

[2]  Pramod K. Varshney,et al.  Noise Enhanced Nonparametric Detection , 2009, IEEE Transactions on Information Theory.

[3]  Vladimir J. Lumelsky,et al.  Robust Data-Optimized Stochastic Analog-to-Digital Converters , 2007, IEEE Transactions on Signal Processing.

[4]  Gregoire Nicolis,et al.  Stochastic resonance , 2007, Scholarpedia.

[5]  Derek Abbott,et al.  What Is Stochastic Resonance? Definitions, Misconceptions, Debates, and Its Relevance to Biology , 2009, PLoS Comput. Biol..

[6]  G. Casella,et al.  Statistical Inference , 2003, Encyclopedia of Social Network Analysis and Mining.

[7]  Ashok Patel,et al.  Quantizer noise benefits in nonlinear signal detection with alpha-stable channel noise , 2009, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing.

[8]  C. Pearce,et al.  Stochastic Resonance: From Suprathreshold Stochastic Resonance to Stochastic Signal Quantization , 2008 .

[9]  Pierre-Olivier Amblard,et al.  On pooling networks and fluctuation in suboptimal detection framework , 2007 .

[10]  Derek Abbott,et al.  An analysis of noise enhanced information transmission in an array of comparators , 2002 .

[11]  Zhi-Quan Luo,et al.  Universal decentralized estimation in a bandwidth constrained sensor network , 2005, IEEE Transactions on Information Theory.

[12]  N G Stocks,et al.  Information transmission in parallel threshold arrays: suprathreshold stochastic resonance. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  S. Kay Fundamentals of statistical signal processing: estimation theory , 1993 .

[14]  N. Stocks,et al.  Suprathreshold stochastic resonance in multilevel threshold systems , 2000, Physical review letters.

[15]  G. Temple The theory of generalized functions , 1955, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[16]  Adi R. Bulsara,et al.  Tuning in to Noise , 1996 .

[17]  Derek Abbott,et al.  Optimal stimulus and noise distributions for information transmission via suprathreshold stochastic resonance. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  Mark D. McDonnell,et al.  Stochastic pooling networks , 2009, 0901.3644.

[19]  Derek Abbott,et al.  Analog-to-digital conversion using suprathreshold stochastic resonance , 2005, SPIE Micro + Nano Materials, Devices, and Applications.

[20]  Ashok Patel,et al.  2009 Special Issue , 2022 .

[21]  Ashok Patel,et al.  Optimal Noise Benefits in Neyman–Pearson and Inequality-Constrained Statistical Signal Detection , 2009, IEEE Transactions on Signal Processing.

[22]  Ashok Patel,et al.  Stochastic Resonance in Continuous and Spiking Neuron Models with Levy Noise , 2008 .

[23]  François Chapeau-Blondeau,et al.  Fisher information and noise-aided power estimation from one-bit quantizers , 2008, Digit. Signal Process..

[24]  François Chapeau-Blondeau,et al.  Noise-enhanced nonlinear detector to improve signal detection in non-Gaussian noise , 2006, Signal Process..

[25]  François Chapeau-Blondeau,et al.  Noise-Improved Bayesian Estimation With Arrays of One-Bit Quantizers , 2007, IEEE Transactions on Instrumentation and Measurement.

[26]  Ashok Patel,et al.  Noise Benefits in Quantizer-Array Correlation Detection and Watermark Decoding , 2011, IEEE Transactions on Signal Processing.