개인화 추천시스템의 사용자 평가에 대한 통합적 접근

온라인에서 추천시스템은 사용자들의 구매 이력 또는 선호도를 바탕으로 적절한 콘텐츠 또는 서비스를 제공하는 IT기술이다. 추천시스템에 대한 사용자의 평가에는 추천 결과에 기반한 시스템 성과와 추천 방식에 의해 형성되는 사용자의 태도에 대한 두 측면 모두 고려되어야 한다. 그러나 시스템 성과와 사용자 태도에 대한 통합적 관점의 추천시스템 평가에 대한 연구는 많지 않았다. 본 연구의 목적은 추천시스템에 대한 사용자 평가의 통합적 관점을 제시하는 것에 있다. 그에 따라 사용자 태도 형성과 관련하여 자기 참조(Self-reference)와 사회적 실재감(Social Presence)의 정도를 구분하여 웹 기반 실험을 수행하였으며 추천시스템의 성과 측정을 위하여 추천 알고리즘 평가에 널리 활용되어 온 정확성(Accuracy)과 새로움(Novelty)을 활용하였다. 연구의 결과로 추천시스템의 사용자 만족에 미치는 변수로 정확성과 새로움이 시스템 특성 요소로 제시되었으며 사용자 태도 관점에서 사회적 실재감이 사용자의 만족에 영향을 주었다.