Optimization of static and dynamic travel range of electrostatically driven microbeams using particle swarm optimization

Abstract This paper examines the enhancement of static and dynamic travel range of electrostatically driven microbeams using shape optimization approach. Continuous functions of width and thickness are used for optimizing the geometry of both cantilever and fixed–fixed microbeams. Rayleigh–Ritz energy method is employed to compute the static and dynamic pull-in parameters. Particle swarm optimization and hybrid simulated annealing are used for shape optimization of microbeams. Constraints on design variables are imposed using penalty approach. Enhanced pull-in parameters obtained for variable geometry microbeams have been validated using 3-D finite element analysis. Optimized shapes of microbeams show significant improvement in static and dynamic travel range. Pull-in displacement is increased up to 54.92% for cantilever microbeam and 40.79% for fixed–fixed microbeam with hybrid simulated annealing. Effectiveness of particle swarm optimization is brought out through representative test cases. The convergence of the particle swarm optimization is approximately five times faster as compared to the hybrid simulated annealing, while maintaining the same level of accuracy.

[1]  H. Tilmans,et al.  Electrostatically driven vacuum-encapsulated polysilicon resonators Part I. Design and fabrication , 1994 .

[2]  W. Miller,et al.  A closed-form model for the pull-in voltage of electrostatically actuated cantilever beams , 2005 .

[3]  Ki Bang Lee,et al.  Closed-form expressions for pull-in parameters of two-degree-of-freedom torsional microactuators , 2007 .

[4]  D. N. Pawaskar,et al.  Analysis of Electrostatically Actuated Narrow Microcantilevers Using Rayleigh-Ritz Energy Technique , 2008 .

[5]  M. Horenstein,et al.  Microelectromechanical deformable mirrors , 1999 .

[6]  M. Younis,et al.  A Study of the Nonlinear Response of a Resonant Microbeam to an Electric Actuation , 2003 .

[7]  Reza Ghodssi,et al.  Microfabrication of 3D silicon MEMS structures using gray-scale lithography and deep reactive ion et , 2005 .

[8]  G. Barbastathis,et al.  Dynamic pull-in of parallel-plate and torsional electrostatic MEMS actuators , 2005, Journal of Microelectromechanical Systems.

[9]  D. N. Pawaskar,et al.  Shape optimization of electrostatically actuated microbeams for extending static and dynamic operating ranges , 2012 .

[10]  Marc P.Y. Desmulliez,et al.  Electric field breakdown at micrometre separations in air and nitrogen at atmospheric pressure , 2000 .

[11]  R. Ghodssi,et al.  Microfabrication of 3 D silicon MEMS structures using grayscale lithography and deep reactive ion etching , 2003 .

[12]  M. Porfiri,et al.  Electromechanical Model of Electrically Actuated Narrow Microbeams , 2006, Journal of Microelectromechanical Systems.

[13]  Ali H. Nayfeh,et al.  Dynamic pull-in phenomenon in MEMS resonators , 2007 .

[14]  S. Krylov Lyapunov exponents as a criterion for the dynamic pull-in instability of electrostatically actuated microstructures , 2007 .

[15]  S. Senturia,et al.  M-TEST: A test chip for MEMS material property measurement using electrostatically actuated test structures , 1997 .

[16]  D. Elata On the static and dynamic response of electrostatic actuators , 2005 .

[17]  Harrie A.C. Tilmans,et al.  Static and dynamic aspects of an air-gap capacitor , 1992 .

[18]  Aurora Trinidad Ramirez Pozo,et al.  Applying a Discrete Particle Swarm Optimization Algorithm to Combinatorial Problems , 2010, 2010 Eleventh Brazilian Symposium on Neural Networks.

[19]  A. Nayfeh,et al.  Dynamic analysis of variable-geometry electrostatic microactuators , 2006 .

[20]  Z. Gürdal,et al.  Optimal design of an electrostatically actuated microbeam for maximum pull-in voltage , 2005 .

[21]  A. Nayfeh,et al.  Modeling and design of variable-geometry electrostatic microactuators , 2005 .

[22]  M. Porfiri,et al.  Review of modeling electrostatically actuated microelectromechanical systems , 2007 .

[23]  Shiuh-Jer Huang,et al.  Some design considerations on the electrostatically actuated microstructures , 2004 .

[24]  Jonathan James Lake,et al.  Particle Swarm Optimization for Design of Slotted MEMS Resonators With Low Thermoelastic Dissipation , 2014, Journal of Microelectromechanical Systems.

[25]  D. N. Pawaskar,et al.  Enhancement of static and dynamic travel range of electrostatically actuated microbeams using hybrid simulated annealing , 2015 .

[26]  Chongdu Cho,et al.  Deflection, Frequency, and Stress Characteristics of Rectangular, Triangular, and Step Profile Microcantilevers for Biosensors , 2009, Sensors.

[27]  V. Leus,et al.  On the Dynamic Response of Electrostatic MEMS Switches , 2008, Journal of Microelectromechanical Systems.

[28]  H. B. Palmer The capacitance of a parallel-plate capacitor by the Schwartz-Christoffel transformation , 1937, Electrical Engineering.

[29]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[30]  Muthukumaran Packirisamy,et al.  Frequency tuning AFM optical levers using a slot , 2008 .

[31]  A. Nayfeh,et al.  Dynamics of Variable-Geometry Electrostatic Microactuators , 2006 .

[32]  Richard J. Balling,et al.  Optimal Steel Frame Design by Simulated Annealing , 1991 .

[33]  S. Chaterjee,et al.  A large deflection model for the pull-in analysis of electrostatically actuated microcantilever beams , 2009 .

[34]  R R Trivedi,et al.  Shape Optimization of Electrostatically Actuated Micro Cantilever Beam with Extended Travel Range Using Simulated Annealing , 2011 .

[35]  Mahdi Moghimi Zand,et al.  Application of homotopy analysis method in studying dynamic pull-in instability of microsystems , 2009 .

[36]  D. N. Pawaskar,et al.  Pull-In Dynamics of Variable-Width Electrostatic Microactuators , 2008 .

[37]  Russell C. Eberhart,et al.  Swarm intelligence for permutation optimization: a case study of n-queens problem , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[38]  M. Porfiri,et al.  Vibrations of narrow microbeams predeformed by an electric field , 2008 .

[39]  Kun-Nan Chen,et al.  Shape optimization of micromachined biosensing cantilevers , 2007, 2007 International Microsystems, Packaging, Assembly and Circuits Technology.

[40]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[41]  Ali H. Nayfeh,et al.  Characterization of the mechanical behavior of an electrically actuated microbeam , 2002 .

[42]  S. F.R.,et al.  The coalescence of closely spaced drops when they are at different electric potentials , 1968 .

[43]  S. D. Senturia,et al.  Generating efficient dynamical models for microelectromechanical systems from a few finite-element simulation runs , 1999 .

[44]  J. Golinval,et al.  REDUCED-ORDER MODELING OF ELECTROSTATICALLY-ACTUATED MICRO-BEAMS , 2008 .

[45]  H. Nathanson,et al.  The resonant gate transistor , 1967 .

[46]  Yapu Zhao,et al.  Numerical and Analytical Study on the Pull-in Instability of Micro-Structure under Electrostatic Loading , 2006 .

[47]  Robert Puers,et al.  Pull-in voltage analysis of electrostatically actuated beam structures with fixed–fixed and fixed–free end conditions , 2002 .

[48]  Ernst Obermeier,et al.  Microactuators and their technologies , 2000 .

[49]  A. Nayfeh,et al.  Dynamics and Global Stability of Beam-based Electrostatic Microactuators , 2010 .