Understanding the functional neuroanatomy of acquired prosopagnosia

One of the most remarkable disorders following brain damage is prosopagnosia, the inability to recognize faces. While a number of cases of prosopagnosia have been described at the behavioral level, the functional neuroanatomy of this face recognition impairment, and thus the brain regions critically involved in normal face recognition, has never been specified in great detail. Here, we used anatomical and functional magnetic resonance imaging (fMRI) to present the detailed functional neuroanatomy of a single case of acquired prosopagnosia (PS; Rossion, B., Caldara, R., Seghier, M., Schuller, A.-M., Lazeyras, F., Mayer, E., 2003a. A network of occipito-temporal face-sensitive areas besides the right middle fusiform gyrus is necessary for normal face processing. Brain 126, 2381-95; Rossion, B., Joyce, C.A., Cottrell, G.W., Tarr, M.J., 2003b. Early lateralization and orientation tuning for face, word, and object processing in the visual cortex. Neuroimage 20, 1609-24) with normal object recognition. First, we clarify the exact anatomical location and extent of PS' lesions in relation to (a) retinotopic cortex, (b) face-preferring regions, and (c) other classical visual regions. PS' main lesion - most likely causing her prosopagnosia - is localized in the posterior part of the right ventral occipitotemporal cortex. This lesion causes a left superior paracentral scotoma, as frequently observed in cases of prosopagnosia. While the borders of the early visual areas in the left hemisphere could be delineated well, the extensive posterior right-sided lesion hampered a full specification of the cortical representation of the left visual field. Using multiple scanning runs, face-preferring activation was detected within the right middle fusiform gyrus (MFG) in the so-called 'fusiform face area' ('FFA'), but also in the left inferior occipital gyrus (left 'OFA'), and in the right posterior superior temporal sulcus (STS). The dorsal part of the lateral occipital complex (LOC) and the human middle temporal cortex (hMT+/V5) were localized bilaterally. The color-preferring region V4/V8 was localized only in the left hemisphere. In the right hemisphere, the posterior lesion spared the ventral part of LOC, a region that may be critical for the preserved object recognition abilities of the patient, and the restriction of her deficit to the category of faces. The presumptive functions of both structurally damaged and preserved regions are discussed and new hypotheses regarding the impaired and preserved abilities of the patient during face and non-face object processing are derived. Fine-grained neurofunctional analyses of brain-damaged single cases with isolated recognition deficits may considerably improve our knowledge of the brain regions critically involved in specific visual functions, such as face recognition.

[1]  A. Benton,et al.  Prosopagnosia and facial discrimination. , 1972, Journal of the neurological sciences.

[2]  B. Rossion,et al.  Revisiting Snodgrass and Vanderwart's Object Pictorial Set: The Role of Surface Detail in Basic-Level Object Recognition , 2004, Perception.

[3]  T Landis,et al.  Face recognition and lipreading. A neurological dissociation. , 1986, Brain : a journal of neurology.

[4]  C. Genovese,et al.  A functional MRI study of face recognition in patients with prosopagnosia , 2001, Neuroreport.

[5]  O. Koenig,et al.  Separable Mechanisms in Face Processing: Evidence from Hemispheric Specialization , 1991, Journal of Cognitive Neuroscience.

[6]  B. Pillon,et al.  [Anatomoclinical study of a case of prosopagnosia]. , 1972, Revue neurologique (Paris).

[7]  J Zihl,et al.  Visual field rehabilitation in the cortically blind? , 1986, Journal of neurology, neurosurgery, and psychiatry.

[8]  Bruno Rossion,et al.  The Behavioral and Cognitive Neurology of Stroke: Prosopagnosia , 2007 .

[9]  Seth E. Bouvier,et al.  Behavioral deficits and cortical damage loci in cerebral achromatopsia. , 2006, Cerebral cortex.

[10]  J. Barton,et al.  Impaired configurational processing in a case of progressive prosopagnosia associated with predominant right temporal lobe atrophy. , 2003, Brain : a journal of neurology.

[11]  G. Orban,et al.  Motion-responsive regions of the human brain , 1999, Experimental Brain Research.

[12]  P. Feyereisen,et al.  A case of prosopagnosia with some preserved covert remembrance of familiar faces , 1983, Brain and Cognition.

[13]  Russell A. Epstein,et al.  The Parahippocampal Place Area Recognition, Navigation, or Encoding? , 1999, Neuron.

[14]  M. Seghier,et al.  A network of occipito-temporal face-sensitive areas besides the right middle fusiform gyrus is necessary for normal face processing. , 2003, Brain : a journal of neurology.

[15]  T. Allison,et al.  Electrophysiological studies of human face perception. I: Potentials generated in occipitotemporal cortex by face and non-face stimuli. , 1999, Cerebral cortex.

[16]  L L Chao,et al.  Are face-responsive regions selective only for faces? , 1999, Neuroreport.

[17]  G. Paxinos,et al.  THE HUMAN NERVOUS SYSTEM , 1975 .

[18]  D. Maurer,et al.  Expert face processing requires visual input to the right hemisphere during infancy , 2003, Nature Neuroscience.

[19]  Glyn W Humphreys,et al.  Face context interferes with local part processing in a prosopagnosic patient , 2002, Neuropsychologia.

[20]  A. Damasio,et al.  Central achromatopsia , 1980, Neurology.

[21]  R. Henson,et al.  Neural response suppression, haemodynamic repetition effects, and behavioural priming , 2003, Neuropsychologia.

[22]  T. Allison,et al.  Face-Specific Processing in the Human Fusiform Gyrus , 1997, Journal of Cognitive Neuroscience.

[23]  E. Halgren,et al.  Location of human face‐selective cortex with respect to retinotopic areas , 1999, Human brain mapping.

[24]  Adrian T. Lee,et al.  fMRI of human visual cortex , 1994, Nature.

[25]  G B Arden,et al.  The Visual System , 2021, AMA Guides to the Evaluation of Permanent Impairment, 6th Edition, 2021.

[26]  J. Sergent,et al.  Functional neuroanatomy of face and object processing. A positron emission tomography study. , 1992, Brain : a journal of neurology.

[27]  Kenneth F. Valyear,et al.  The fusiform face area is not sufficient for face recognition: Evidence from a patient with dense prosopagnosia and no occipital face area , 2006, Neuropsychologia.

[29]  Jason J S Barton,et al.  Perceptual Functions in Prosopagnosia , 2004, Perception.

[30]  T Landis,et al.  Prosopagnosia and agnosia for noncanonical views. An autopsied case. , 1988, Brain : a journal of neurology.

[31]  J. C. Meadows The anatomical basis of prosopagnosia , 1974, Journal of neurology, neurosurgery, and psychiatry.

[32]  Bruno Rossion,et al.  Does prosopagnosia take the eyes out from faces? Evidence for a defect in the use of diagnostic facial information in a brain-damaged patient , 2004 .

[33]  Isabel Gauthier,et al.  Perceptual Expertise Effects Are Not All or None: Spatially Limited Perceptual Expertise for Faces in a Case of Prosopagnosia , 2006, Journal of Cognitive Neuroscience.

[34]  Martha J. Farah,et al.  Face perception and within-category discrimination in prosopagnosia , 1995, Neuropsychologia.

[35]  Bruno Rossion,et al.  How Does the Brain Discriminate Familiar and Unfamiliar Faces?: A PET Study of Face Categorical Perception , 2001, Journal of Cognitive Neuroscience.

[36]  T Yamamoto,et al.  Selective impairment of facial recognition due to a haematoma restricted to the right fusiform and lateral occipital region , 2001, Journal of neurology, neurosurgery, and psychiatry.

[37]  S. Edelman,et al.  Cue-Invariant Activation in Object-Related Areas of the Human Occipital Lobe , 1998, Neuron.

[38]  Stephanie Clarke,et al.  Face recognition and postero-inferior hemispheric lesions , 1997, Neuropsychologia.

[39]  Verne S. Caviness,et al.  Prosopagnosia as a Deficit in Encoding Curved Surface , 2001, Journal of Cognitive Neuroscience.

[40]  Adrian Danek,et al.  Prosopagnosia after unilateral right cerebral infarction , 2002, Journal of Neurology.

[41]  D. Tank,et al.  Brain magnetic resonance imaging with contrast dependent on blood oxygenation. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[42]  P. Benson,et al.  Towards a functional neuroanatomy of self processing: effects of faces and words. , 2000, Brain research. Cognitive brain research.

[43]  J. G. Snodgrass,et al.  A standardized set of 260 pictures: norms for name agreement, image agreement, familiarity, and visual complexity. , 1980, Journal of experimental psychology. Human learning and memory.

[44]  J Sergent,et al.  Varieties of functional deficits in prosopagnosia. , 1992, Cerebral cortex.

[45]  J W Belliveau,et al.  Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. , 1995, Science.

[46]  R Bowtell,et al.  Lip-Reading Ability and Patterns of Cortical Activation Studied Using fMRI , 2000, British journal of audiology.

[47]  A Sahraie,et al.  New Farnsworth-Munsell 100 hue test norms of normal observers for each year of age 5–22 and for age decades 30–70 , 2002, The British journal of ophthalmology.

[48]  Martin Arguin,et al.  Semantic and Visual Determinants of Face Recognition in a Prosopagnosic Patient , 1998, Journal of Cognitive Neuroscience.

[49]  D. Heeger,et al.  Linear Systems Analysis of Functional Magnetic Resonance Imaging in Human V1 , 1996, The Journal of Neuroscience.

[50]  K. Grill-Spector,et al.  Repetition and the brain: neural models of stimulus-specific effects , 2006, Trends in Cognitive Sciences.

[51]  Ravi S. Menon,et al.  The effects of visual object priming on brain activation before and after recognition , 2000, Current Biology.

[52]  P. Cavanagh,et al.  Retinotopy and color sensitivity in human visual cortical area V8 , 1998, Nature Neuroscience.

[53]  J. Keenan,et al.  Lesions of the fusiform face area impair perception of facial configuration in prosopagnosia , 2002, Neurology.

[54]  D. Benson,et al.  Prosopagnosia: a bihemispheric disorder. , 1992 .

[55]  Katharina Henke,et al.  Specificity of Face Recognition: Recognition of Exemplars of Non-Face Objects In Prosopagnosia , 1998, Cortex.

[56]  A. Neuren Visual Agnosia , 1991, Neurology.

[57]  G. V. Van Hoesen,et al.  Prosopagnosia , 1982, Neurology.

[58]  W. Singer,et al.  The Myth of Upright Vision. A Psychophysical and Functional Imaging Study of Adaptation to Inverting Spectacles , 1999, Perception.

[59]  Joseph T Devlin,et al.  The myth of the visual word form area , 2003, NeuroImage.

[60]  A. Cowey,et al.  Behavioural and electrophysiological chromatic and achromatic contrast sensitivity in an achromatopsic patient. , 1996, Journal of neurology, neurosurgery, and psychiatry.

[61]  Andrew W. Young,et al.  Quaglino's 1867 Case of Prosopagnosia , 2003, Cortex.

[62]  H. Hécaen,et al.  Agnosia for faces (prosopagnosia). , 1962, Archives of neurology.

[63]  Bruno Rossion,et al.  Does Prosopagnosia Take the Eyes Out of Face Representations? Evidence for a Defect in Representing Diagnostic Facial Information following Brain Damage , 2005, Journal of Cognitive Neuroscience.

[64]  N. Kanwisher,et al.  The lateral occipital complex and its role in object recognition , 2001, Vision Research.

[65]  T. R. Jordan,et al.  Perception and action in 'visual form agnosia'. , 1991, Brain : a journal of neurology.

[66]  K. Grill-Spector,et al.  The dynamics of object-selective activation correlate with recognition performance in humans , 2000, Nature Neuroscience.

[67]  Joachim Bodamer,et al.  Die Prosop-Agnosie , 2004, Archiv für Psychiatrie und Nervenkrankheiten.

[68]  R. Lakowski THE FARNSWORTH-MUNSELL 100-HUE TEST* , 1971 .

[69]  E. De Renzi,et al.  Prosopagnosia in two patients with CT scan evidence of damage confined to the right hemisphere. , 1986, Neuropsychologia.

[70]  T. Hendler,et al.  Contrast sensitivity in human visual areas and its relationship to object recognition. , 2002, Journal of neurophysiology.

[71]  A. Benton,et al.  The neuropsychology of facial recognition. , 1980, The American psychologist.

[72]  Aina Puce,et al.  The functional magnetic resonance imaging hemodynamic response to faces remains stable until the ninth decade , 2003, NeuroImage.

[73]  H. Ellis,et al.  Bodamer's (1947) paper on prosopagnosia , 1990 .

[74]  Raymond Bruyer,et al.  Heterogeneity in the cognitive manifestations of prosopagnosia: The study of a group of single cases , 1993 .

[75]  A. Young,et al.  Understanding face recognition. , 1986, British journal of psychology.

[76]  S. Edelman,et al.  Differential Processing of Objects under Various Viewing Conditions in the Human Lateral Occipital Complex , 1999, Neuron.

[77]  M. Tovée,et al.  Face processing: Getting by with a little help from its friends , 1998, Current Biology.

[78]  S. Zeki,et al.  A century of cerebral achromatopsia. , 1990, Brain : a journal of neurology.

[79]  M. Tarr,et al.  Can Face Recognition Really be Dissociated from Object Recognition? , 1999, Journal of Cognitive Neuroscience.

[80]  R. Goebel,et al.  Cerebral Cortex doi:10.1093/cercor/bhj005 Impaired Face Discrimination in Acquired Prosopagnosia Is Associated with Abnormal Response to Individual Faces in the Right Middle Fusiform Gyrus , 2005 .

[81]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[82]  Russell A. Epstein,et al.  Neuropsychological evidence for a topographical learning mechanism in parahippocampal cortex , 2001, Cognitive neuropsychology.

[83]  K. Grill-Spector,et al.  Object-selective cortex exhibits performance-independent repetition suppression. , 2006, Journal of neurophysiology.

[84]  T. Allison,et al.  Temporal Cortex Activation in Humans Viewing Eye and Mouth Movements , 1998, The Journal of Neuroscience.

[85]  Bruno Rossion,et al.  Hemispheric Asymmetries for Whole-Based and Part-Based Face Processing in the Human Fusiform Gyrus , 2000, Journal of Cognitive Neuroscience.

[86]  J. Decety,et al.  Brain Regions Involved in the Perception of Gaze: A PET Study , 1998, NeuroImage.

[87]  R. C. Oldfield The assessment and analysis of handedness: the Edinburgh inventory. , 1971, Neuropsychologia.

[88]  F. Michèl,et al.  [Are the lesions responsible for prosopagnosia always bilateral?]. , 1989, Revue neurologique.

[89]  N. Kanwisher,et al.  The Fusiform Face Area: A Module in Human Extrastriate Cortex Specialized for Face Perception , 1997, The Journal of Neuroscience.

[90]  M. Goodale,et al.  Ventral occipital lesions impair object recognition but not object-directed grasping: an fMRI study. , 2003, Brain : a journal of neurology.

[91]  Bruno Rossion,et al.  Faces are represented holistically in the human occipito-temporal cortex , 2006, NeuroImage.

[92]  Rainer Goebel,et al.  Activity patterns in human motion-sensitive areas depend on the interpretation of global motion , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[93]  Stanislas Dehaene,et al.  Specialization within the ventral stream: the case for the visual word form area , 2004, NeuroImage.

[94]  J. Haxby,et al.  The distributed human neural system for face perception , 2000, Trends in Cognitive Sciences.

[95]  Nancy Kanwisher,et al.  A cortical representation of the local visual environment , 1998, Nature.

[96]  J. Sergent,et al.  Prosopagnosia in a right hemispherectomized patient , 1995 .

[97]  R. Malach,et al.  Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[98]  D. Levine,et al.  Prosopagnosia: A defect in visual configural processing , 1989, Brain and Cognition.

[99]  R. Campbell,et al.  FACE RECOGNITION AND LIPREADING , 1986 .

[100]  J. Schmahmann Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. , 2004, The Journal of neuropsychiatry and clinical neurosciences.

[101]  N. Kanwisher,et al.  Neuroimaging of cognitive functions in human parietal cortex , 2001, Current Opinion in Neurobiology.

[102]  P. Bach-y-Rita,et al.  Visual field rehabilitation in the cortically blind? , 1985, Journal of neurology, neurosurgery, and psychiatry.

[103]  Bruce D. McCandliss,et al.  The visual word form area: expertise for reading in the fusiform gyrus , 2003, Trends in Cognitive Sciences.

[104]  C Büchel,et al.  Brain regions involved in articulation , 1999, The Lancet.

[105]  Karl J. Friston,et al.  A direct demonstration of functional specialization in human visual cortex , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[106]  M. Tarr,et al.  The Fusiform Face Area is Part of a Network that Processes Faces at the Individual Level , 2000, Journal of Cognitive Neuroscience.

[107]  J. Grafman,et al.  A Case of Prosopagnosia Following Moderate Closed Head Injury with Left Hemisphere Focal Lesion , 2000, Cortex.

[108]  R. Tootell,et al.  Where is 'dorsal V4' in human visual cortex? Retinotopic, topographic and functional evidence. , 2001, Cerebral cortex.

[109]  Avi Chaudhuri,et al.  Patchy Organization and Asymmetric Distribution of the Neural Correlates of Face Processing in Monkey Inferotemporal Cortex , 2005, Current Biology.

[110]  Z. Goldsmith,et al.  Facial recognition and prosopagnosia: past and present concepts , 2001 .

[111]  A. Damasio,et al.  Intact recognition of facial expression, gender, and age in patients with impaired recognition of face identity , 1988, Neurology.

[112]  Bruno Rossion,et al.  Early lateralization and orientation tuning for face, word, and object processing in the visual cortex , 2003, NeuroImage.