Variable selection for functional regression models via the L1 regularization

In regression analysis, L1 regularizations such as the lasso or the SCAD provide sparse solutions, which leads to variable selection. We consider the variable selection problem where variables are given as functional forms, using L1 regularization. In order to select functional variables each of which is controlled by multiple parameters, we treat parameters as grouped parameters and then apply the group SCAD. A crucial issue in the regularization method is the choice of regularization parameters. We derive a model selection criterion for evaluating the model estimated by the regularization method via the group SCAD penalty. Results of simulation and real data analysis show the effectiveness of the proposed modeling strategy.

[1]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[2]  M. Yuan,et al.  Model selection and estimation in regression with grouped variables , 2006 .

[3]  S. Konishi,et al.  Regularized functional regression modeling for functional response and predictors , 2009 .

[4]  Michel Verleysen,et al.  Representation of functional data in neural networks , 2005, Neurocomputing.

[5]  K. Hashimoto,et al.  On the L 2 a Priori Error Estimates to the Finite Element Solution of Elliptic Problems with Singular Adjoint Operator , 2008 .

[6]  Jianqing Fan,et al.  New Estimation and Model Selection Procedures for Semiparametric Modeling in Longitudinal Data Analysis , 2004 .

[7]  Hiroki Masuda,et al.  Jarque–Bera normality test for the driving Lévy process of a discretely observed univariate SDE , 2008 .

[8]  Henry W. Altland,et al.  Applied Functional Data Analysis , 2003, Technometrics.

[9]  John Moody,et al.  Fast Learning in Networks of Locally-Tuned Processing Units , 1989, Neural Computation.

[10]  Jianqing Fan,et al.  Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .

[11]  Kam D. Dahlquist,et al.  Regression Approaches for Microarray Data Analysis , 2002, J. Comput. Biol..

[12]  James O. Ramsay,et al.  Functional Data Analysis , 2005 .

[13]  Jianqing Fan,et al.  Variable Selection for Cox's proportional Hazards Model and Frailty Model , 2002 .

[14]  David R. Anderson,et al.  Model Selection and Multimodel Inference , 2003 .

[15]  Yuko Araki,et al.  Functional regression modeling via regularized Gaussian basis expansions , 2009 .

[16]  Runze Li,et al.  Tuning parameter selectors for the smoothly clipped absolute deviation method. , 2007, Biometrika.

[17]  R. Tibshirani The lasso method for variable selection in the Cox model. , 1997, Statistics in medicine.

[18]  Gareth M. James Generalized linear models with functional predictors , 2002 .

[19]  S. Konishi,et al.  Nonlinear regression modeling via regularized radial basis function networks , 2008 .

[20]  Frédéric Ferraty,et al.  Most-predictive design points for functional data predictors , 2010 .

[21]  Hiroyuki Chihara,et al.  A third order dispersive flow for closed curves into almost Hermitian manifolds , 2008, 0807.4591.

[22]  R. Tibshirani,et al.  Varying‐Coefficient Models , 1993 .

[23]  S. Konishi,et al.  Bayesian information criteria and smoothing parameter selection in radial basis function networks , 2004 .

[24]  Hongzhe Li,et al.  Group SCAD regression analysis for microarray time course gene expression data , 2007, Bioinform..

[25]  A. Atkinson Subset Selection in Regression , 1992 .

[26]  Runze Li,et al.  Variable selection for multivariate failure time data. , 2005, Biometrika.

[27]  G. Kitagawa,et al.  Information Criteria and Statistical Modeling , 2007 .

[28]  G. Kitagawa,et al.  Generalised information criteria in model selection , 1996 .

[29]  Alan J. Miller,et al.  Subset Selection in Regression , 1991 .

[30]  Frédéric Ferraty,et al.  Additive prediction and boosting for functional data , 2009, Comput. Stat. Data Anal..

[31]  David R. Anderson,et al.  Model selection and multimodel inference : a practical information-theoretic approach , 2003 .

[32]  Eiji Onodera,et al.  The initial value problem for a third-order dispersive flow into compact almost Hermitian manifolds , 2008, 0805.3219.

[33]  Masaaki Kanno,et al.  Optimizing a Particular Real Root of a Polynomial by a Special Cylindrical Algebraic Decomposition , 2011, Math. Comput. Sci..

[34]  I. Johnstone,et al.  Ideal spatial adaptation by wavelet shrinkage , 1994 .

[35]  D. Billheimer Functional Data Analysis, 2nd edition edited by J. O. Ramsay and B. W. Silverman , 2007 .

[36]  Masato Wakayama,et al.  Hermitian Symmetric Spaces of Tube Type and Multivariate Meixner-Pollaczek Polynomials , 2008, 0812.1292.