Variable selection for functional regression models via the L1 regularization
暂无分享,去创建一个
[1] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[2] M. Yuan,et al. Model selection and estimation in regression with grouped variables , 2006 .
[3] S. Konishi,et al. Regularized functional regression modeling for functional response and predictors , 2009 .
[4] Michel Verleysen,et al. Representation of functional data in neural networks , 2005, Neurocomputing.
[5] K. Hashimoto,et al. On the L 2 a Priori Error Estimates to the Finite Element Solution of Elliptic Problems with Singular Adjoint Operator , 2008 .
[6] Jianqing Fan,et al. New Estimation and Model Selection Procedures for Semiparametric Modeling in Longitudinal Data Analysis , 2004 .
[7] Hiroki Masuda,et al. Jarque–Bera normality test for the driving Lévy process of a discretely observed univariate SDE , 2008 .
[8] Henry W. Altland,et al. Applied Functional Data Analysis , 2003, Technometrics.
[9] John Moody,et al. Fast Learning in Networks of Locally-Tuned Processing Units , 1989, Neural Computation.
[10] Jianqing Fan,et al. Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .
[11] Kam D. Dahlquist,et al. Regression Approaches for Microarray Data Analysis , 2002, J. Comput. Biol..
[12] James O. Ramsay,et al. Functional Data Analysis , 2005 .
[13] Jianqing Fan,et al. Variable Selection for Cox's proportional Hazards Model and Frailty Model , 2002 .
[14] David R. Anderson,et al. Model Selection and Multimodel Inference , 2003 .
[15] Yuko Araki,et al. Functional regression modeling via regularized Gaussian basis expansions , 2009 .
[16] Runze Li,et al. Tuning parameter selectors for the smoothly clipped absolute deviation method. , 2007, Biometrika.
[17] R. Tibshirani. The lasso method for variable selection in the Cox model. , 1997, Statistics in medicine.
[18] Gareth M. James. Generalized linear models with functional predictors , 2002 .
[19] S. Konishi,et al. Nonlinear regression modeling via regularized radial basis function networks , 2008 .
[20] Frédéric Ferraty,et al. Most-predictive design points for functional data predictors , 2010 .
[21] Hiroyuki Chihara,et al. A third order dispersive flow for closed curves into almost Hermitian manifolds , 2008, 0807.4591.
[22] R. Tibshirani,et al. Varying‐Coefficient Models , 1993 .
[23] S. Konishi,et al. Bayesian information criteria and smoothing parameter selection in radial basis function networks , 2004 .
[24] Hongzhe Li,et al. Group SCAD regression analysis for microarray time course gene expression data , 2007, Bioinform..
[25] A. Atkinson. Subset Selection in Regression , 1992 .
[26] Runze Li,et al. Variable selection for multivariate failure time data. , 2005, Biometrika.
[27] G. Kitagawa,et al. Information Criteria and Statistical Modeling , 2007 .
[28] G. Kitagawa,et al. Generalised information criteria in model selection , 1996 .
[29] Alan J. Miller,et al. Subset Selection in Regression , 1991 .
[30] Frédéric Ferraty,et al. Additive prediction and boosting for functional data , 2009, Comput. Stat. Data Anal..
[31] David R. Anderson,et al. Model selection and multimodel inference : a practical information-theoretic approach , 2003 .
[32] Eiji Onodera,et al. The initial value problem for a third-order dispersive flow into compact almost Hermitian manifolds , 2008, 0805.3219.
[33] Masaaki Kanno,et al. Optimizing a Particular Real Root of a Polynomial by a Special Cylindrical Algebraic Decomposition , 2011, Math. Comput. Sci..
[34] I. Johnstone,et al. Ideal spatial adaptation by wavelet shrinkage , 1994 .
[35] D. Billheimer. Functional Data Analysis, 2nd edition edited by J. O. Ramsay and B. W. Silverman , 2007 .
[36] Masato Wakayama,et al. Hermitian Symmetric Spaces of Tube Type and Multivariate Meixner-Pollaczek Polynomials , 2008, 0812.1292.