Index Models for Sparsely Sampled Functional Data

The regression problem involving functional predictors has many important applications and a number of functional regression methods have been developed. However, a common complication in functional data analysis is one of sparsely observed curves, that is predictors that are observed, with error, on a small subset of the possible time points. Such sparsely observed data induce an errors-in-variables model, where one must account for measurement error in the functional predictors. Faced with sparsely observed data, most current functional regression methods simply estimate the unobserved predictors and treat them as fully observed; thus failing to account for the extra uncertainty from the measurement error. We propose a new functional errors-in-variables approach, sparse index model functional estimation (SIMFE), which uses a functional index model formulation to deal with sparsely observed predictors. SIMFE has several advantages over more traditional methods. First, the index model implements a nonlinear regression and uses an accurate supervised method to estimate the lower dimensional space into which the predictors should be projected. Second, SIMFE can be applied to both scalar and functional responses and multiple predictors. Finally, SIMFE uses a mixed effects model to effectively deal with very sparsely observed functional predictors and to correctly model the measurement error. Supplementary materials for this article are available online.

[1]  Raymond J. Carroll,et al.  Measurement error in nonlinear models: a modern perspective , 2006 .

[2]  Wolfgang Jank,et al.  Visualizing Online Auctions , 2005 .

[3]  Frédéric Ferraty,et al.  Curves discrimination: a nonparametric functional approach , 2003, Comput. Stat. Data Anal..

[4]  P. Hall,et al.  Single and multiple index functional regression models with nonparametric link , 2011, 1211.5018.

[5]  Peter Hall,et al.  A Functional Data—Analytic Approach to Signal Discrimination , 2001, Technometrics.

[6]  J. Friedman,et al.  A Statistical View of Some Chemometrics Regression Tools , 1993 .

[7]  N. Christou,et al.  Statistical Methods in e-Commerce Research , 2008 .

[8]  D. Botstein,et al.  Singular value decomposition for genome-wide expression data processing and modeling. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[9]  D. Hall Measurement Error in Nonlinear Models: A Modern Perspective , 2008 .

[10]  Wolfgang Jank,et al.  Explaining and Forecasting Online Auction Prices and Their Dynamics Using Functional Data Analysis , 2008 .

[11]  Tailen Hsing,et al.  DECIDING THE DIMENSION OF EFFECTIVE DIMENSION REDUCTION SPACE FOR FUNCTIONAL AND HIGH-DIMENSIONAL DATA , 2010, 1011.2620.

[12]  Bing Li,et al.  Groupwise Dimension Reduction , 2010 .

[13]  Mayukh Dass,et al.  Modeling On-Line Art Auction Dynamics Using Functional Data Analysis , 2006, math/0609292.

[14]  Jeng-Min Chiou,et al.  Identifying cluster number for subspace projected functional data clustering , 2011, Comput. Stat. Data Anal..

[15]  T. Hastie,et al.  [A Statistical View of Some Chemometrics Regression Tools]: Discussion , 1993 .

[16]  H. Muller,et al.  Generalized functional linear models , 2005, math/0505638.

[17]  Jeng-Min Chiou,et al.  Linear manifold modelling of multivariate functional data , 2014 .

[18]  Wolfgang Jank,et al.  Modelling price paths in on‐line auctions: smoothing sparse and unevenly sampled curves by using semiparametric mixed models , 2008 .

[19]  H. Tong,et al.  An adaptive estimation of dimension reduction space, with discussion , 2002 .

[20]  Y. Xia,et al.  A Multiple-Index Model and Dimension Reduction , 2008 .

[21]  Hans-Georg Müller,et al.  Functional Data Analysis , 2016 .

[22]  Gareth M. James Generalized linear models with functional predictors , 2002 .

[23]  Ci-Ren Jiang,et al.  Functional single index models for longitudinal data , 2011, 1103.1726.

[24]  Lexin Li Exploiting predictor domain information in sufficient dimension reduction , 2009, Comput. Stat. Data Anal..

[25]  James G. Scott,et al.  Bayes and empirical-Bayes multiplicity adjustment in the variable-selection problem , 2010, 1011.2333.

[26]  P. Sarda,et al.  SPLINE ESTIMATORS FOR THE FUNCTIONAL LINEAR MODEL , 2003 .

[27]  H. Hotelling Relations Between Two Sets of Variates , 1936 .

[28]  Ker-Chau Li Sliced inverse regression for dimension reduction (with discussion) , 1991 .

[29]  B. Silverman Density estimation for statistics and data analysis , 1986 .

[30]  Hans-Georg Müller,et al.  Functional Data Analysis for Sparse Auction Data , 2008 .

[31]  Wolfgang Jank,et al.  Smoothing sparse and unevenly sampled curves using semiparametric mixed models: An application to online auctions , 2006 .

[32]  Gareth M. James,et al.  Functional Adaptive Model Estimation , 2005 .

[33]  P. Hall,et al.  Properties of principal component methods for functional and longitudinal data analysis , 2006, math/0608022.

[34]  M. D. Martínez-Miranda,et al.  Computational Statistics and Data Analysis , 2009 .

[35]  Wolfgang Jank,et al.  Profiling Price Dynamics in Online Auctions Using Curve Clustering , 2005 .

[36]  Peter Hall,et al.  Nonparametric estimation of a periodic function , 2000 .