Invariant interaction solutions for a supersymmetric mKdV equation

[1]  Wen-Xiu Ma,et al.  Diversity of interaction solutions to the (2+1)-dimensional Ito equation , 2017, Comput. Math. Appl..

[2]  Jian-bing Zhang,et al.  Mixed lump-kink solutions to the BKP equation , 2017, Comput. Math. Appl..

[3]  Bo Ren,et al.  Symmetry reduction related with nonlocal symmetry for Gardner equation , 2017, Commun. Nonlinear Sci. Numer. Simul..

[4]  Wen-Xiu Ma,et al.  Mixed lump-kink solutions to the KP equation , 2017, Comput. Math. Appl..

[5]  Bo Ren Painlevé analysis, nonlocal symmetry and explicit interaction solutions for supersymmetric mKdVB equation , 2016 .

[6]  Ji Lin,et al.  The $$\varvec{(2+1)}$$(2+1)-dimensional Konopelchenko–Dubrovsky equation: nonlocal symmetries and interaction solutions , 2016 .

[7]  Ji Lin,et al.  Nonlocal Symmetry and its Applications in Perturbed mKdV Equation , 2016 .

[8]  Bo Ren Interaction solutions for mKP equation with nonlocal symmetry reductions and CTE method , 2014, 1412.7937.

[9]  Ping Liu,et al.  Bosonization, Painleve property, and exact solutions for the N = 1 supersymmetric mKdV equation , 2014, 1404.5832.

[10]  S. Lou,et al.  Interactions between solitons and other nonlinear Schrödinger waves. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  S. Lou,et al.  Infinitely many nonlocal symmetries and conservation laws for the (1+1)-dimensional Sine-Gordon equation , 2013, 1308.3018.

[12]  Ji Lin,et al.  Supersymmetric Ito equation: Bosonization and exact solutions , 2013 .

[13]  Sen-Yue Lou,et al.  Explicit solutions from eigenfunction symmetry of the Korteweg-de Vries equation. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  S. Lou,et al.  Bosonization of supersymmetric KdV equation , 2011, 1108.4160.

[15]  Fang Lin Luo,et al.  Quasi-periodic waves of the N = 1 supersymmetric modified Kortewegde Vries equation , 2011 .

[16]  Y. Hon,et al.  Quasiperiodic Wave Solutions of Supersymmetric KdV Equation in Superspace , 2010 .

[17]  Jingsong He,et al.  A supertrace identity and its applications to superintegrable systems , 2008 .

[18]  Xing-Biao Hu,et al.  Supersymmetric modified Korteweg–de Vries equation: bilinear approach , 2004, nlin/0407050.

[19]  Z. Fang,et al.  Blue luminescent center in ZnO films deposited on silicon substrates , 2004 .

[20]  M. Ayari,et al.  Group invariant solutions for the N=2 super Korteweg–de Vries equation , 1999 .

[21]  A S Carstea,et al.  Extension of the bilinear formalism to supersymmetric KdV-type equations , 1998, solv-int/9812022.

[22]  S.Krivonos,et al.  N=2 Super Boussinesq Hierarchy: Lax Pairs and Conservation Laws , 1993, hep-th/9305078.

[23]  S. Bellucci,et al.  N = 2 super Boussinesq hierarchy: Lax pairs and conservation laws , 1993 .

[24]  G. Roelofs,et al.  Supersymmetric extensions of the nonlinear Schrödinger equation: Symmetries and coverings , 1992 .

[25]  Pierre Mathieu,et al.  Supersymmetric extension of the Korteweg--de Vries equation , 1988 .

[26]  R. Sasaki,et al.  Super Virasoro Algebra and Solvable Supersymmetric Quantum Field Theories , 1988 .

[27]  Y. Manin,et al.  A supersymmetric extension of the Kadomtsev-Petviashvili hierarchy , 1985 .

[28]  B. Kupershmidt,et al.  A super Korteweg-de Vries equation: An integrable system , 1984 .

[29]  M. Tabor,et al.  The Painlevé property for partial differential equations , 1983 .

[30]  J. Hruby On the supersymmetric sine-Gordon model and a two-dimentional bag , 1977 .