Autotrophic Microbe Metagenomes and Metabolic Pathways Differentiate Adjacent Red Sea Brine Pools

[1]  Arcady Mushegian,et al.  Metagenomic Analysis of Hadopelagic Microbial Assemblages Thriving at the Deepest Part of Mediterranean Sea, Matapan-vavilov Deepe Mi_2827 1..16 , 2022 .

[2]  Vladimir B. Bajic,et al.  Unique Prokaryotic Consortia in Geochemically Distinct Sediments from Red Sea Atlantis II and Discovery Deep Brine Pools , 2012, PloS one.

[3]  Ryan A. Lesniewski,et al.  The metatranscriptome of a deep-sea hydrothermal plume is dominated by water column methanotrophs and lithotrophs , 2012, The ISME Journal.

[4]  A. Bower,et al.  Vertical, horizontal, and temporal changes in temperature in the Atlantis II and Discovery hot brine pools, Red Sea , 2012 .

[5]  Frank Oliver Glöckner,et al.  Unveiling microbial life in the new deep-sea hypersaline Lake Thetis. Part II: a metagenomic study. , 2012, Environmental microbiology.

[6]  E. van Heerden,et al.  Unconventional lateral gene transfer in extreme thermophilic bacteria. , 2011, International microbiology : the official journal of the Spanish Society for Microbiology.

[7]  M. Nei,et al.  MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. , 2011, Molecular biology and evolution.

[8]  S. Schuster,et al.  Integrative analysis of environmental sequences using MEGAN4. , 2011, Genome research.

[9]  Antoine Danchin,et al.  Hydrothermally generated aromatic compounds are consumed by bacteria colonizing in Atlantis II Deep of the Red Sea , 2011, The ISME Journal.

[10]  B. Tebo,et al.  Microbial diversity and biogeochemistry of the Guaymas Basin deep-sea hydrothermal plume. , 2010, Environmental microbiology.

[11]  Limin Fu,et al.  Artificial and natural duplicates in pyrosequencing reads of metagenomic data , 2010, BMC Bioinformatics.

[12]  Natalia N. Ivanova,et al.  The Complete Multipartite Genome Sequence of Cupriavidus necator JMP134, a Versatile Pollutant Degrader , 2010, PloS one.

[13]  Stefan Vogt,et al.  Mechanisms of gold biomineralization in the bacterium Cupriavidus metallidurans , 2009, Proceedings of the National Academy of Sciences.

[14]  K. Knittel,et al.  Anaerobic oxidation of methane: progress with an unknown process. , 2009, Annual review of microbiology.

[15]  W. D. de Vos,et al.  Comparative Analysis of Pyrosequencing and a Phylogenetic Microarray for Exploring Microbial Community Structures in the Human Distal Intestine , 2009, PloS one.

[16]  V. Orphan,et al.  Manganese- and Iron-Dependent Marine Methane Oxidation , 2009, Science.

[17]  Ying Huang,et al.  Bioinformatics Applications Note Identification of Ribosomal Rna Genes in Metagenomic Fragments , 2022 .

[18]  James R. Cole,et al.  The Ribosomal Database Project: improved alignments and new tools for rRNA analysis , 2008, Nucleic Acids Res..

[19]  D. Pieper,et al.  Metabolic Reconstruction Ofaromatic Compounds Degradation from the Genome of the Amazing Pollutant-degrading Bacterium Cupriavidus Necator Jmp134 , 2007 .

[20]  Rudolf Amann,et al.  Diversity and Abundance of Aerobic and Anaerobic Methane Oxidizers at the Haakon Mosby Mud Volcano, Barents Sea , 2007, Applied and Environmental Microbiology.

[21]  D. Valentine,et al.  Diversity of Archaea in Marine Sediments from Skan Bay, Alaska, Including Cultivated Methanogens, and Description of Methanogenium boonei sp. nov , 2006, Applied and Environmental Microbiology.

[22]  Tracy Palmer,et al.  Secretion by numbers: protein traffic in prokaryotes , 2006, Molecular microbiology.

[23]  P. Vandamme,et al.  Taxonomy of the genus Cupriavidus: a tale of lost and found. , 2004, International journal of systematic and evolutionary microbiology.

[24]  W. Shi,et al.  Chemotaxis-guided movements in bacteria. , 2004, Critical reviews in oral biology and medicine : an official publication of the American Association of Oral Biologists.

[25]  T. Friedrich,et al.  The Escherichia coli NADH:Ubiquinone Oxidoreductase (Complex I) Is a Primary Proton Pump but May Be Capable of Secondary Sodium Antiport* , 2004, Journal of Biological Chemistry.

[26]  N. Watmough,et al.  The bacterial cytochrome cbb3 oxidases. , 2004, Biochimica et biophysica acta.

[27]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[28]  P. Stoffers,et al.  High-resolution methane profiles across anoxic brine-seawater boundaries in the Atlantis-II, Discovery, and Kebrit Deeps (Red Sea) , 2003 .

[29]  E. Delong,et al.  Identification of Methyl Coenzyme M Reductase A (mcrA) Genes Associated with Methane-Oxidizing Archaea , 2003, Applied and Environmental Microbiology.

[30]  K. Stetter,et al.  Autotrophic CO2 fixation pathways in archaea (Crenarchaeota) , 2003, Archives of Microbiology.

[31]  J. Baross,et al.  Temporal Changes in Archaeal Diversity and Chemistry in a Mid-Ocean Ridge Subseafloor Habitat , 2002, Applied and Environmental Microbiology.

[32]  Michael Y. Galperin,et al.  Sodium Ion Cycle in Bacterial Pathogens: Evidence from Cross-Genome Comparisons , 2001, Microbiology and Molecular Biology Reviews.

[33]  Susumu Goto,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 2000, Nucleic Acids Res..

[34]  F. Widdel,et al.  Methane formation from long-chain alkanes by anaerobic microorganisms , 1999, Nature.

[35]  D. Botstein,et al.  Cluster analysis and display of genome-wide expression patterns. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[36]  P. Stoffers,et al.  Hydrographic structure of brine-filled deeps in the Red Sea—new results from the Shaban, Kebrit, Atlantis II, and Discovery Deep , 1998 .

[37]  P. Stoffers,et al.  Methane in Red Sea brines , 1998 .

[38]  P. Anschutz,et al.  Heat and salt fluxes in the Atlantis II Deep (Red Sea) , 1996 .

[39]  C. Ramboz,et al.  The anhydrite saturation index of the ponded brines and sediment pore waters of the Red Sea deeps , 1996 .

[40]  P. Anschutz,et al.  New stratification in the hydrothermal brine system of the Atlantis II Deep, Red Sea , 1995 .

[41]  James G. Ferry,et al.  Methanogenesis : Ecology, Physiology, Biochemistry and Genetics , 1994 .

[42]  J. Lipscomb Biochemistry of the soluble methane monooxygenase. , 1994, Annual review of microbiology.

[43]  Stephen H. Zinder,et al.  Physiological Ecology of Methanogens , 1993 .

[44]  C. Ramboz,et al.  Geyser-type discharge in Atlantis II Deep, Red Sea; evidence of boiling from fluid inclusions in epigenetic anhydrite , 1988 .

[45]  B. B. J�rgensen,et al.  Volatile Fatty Acids and Hydrogen as Substrates for Sulfate-Reducing Bacteria in Anaerobic Marine Sediment , 1981, Applied and environmental microbiology.

[46]  I. West,et al.  Proton/sodium ion antiport in Escherichia coli. , 1974, The Biochemical journal.

[47]  M. Hartmann,et al.  Detailed temperature structure of the hot brines in the Atlantis II Deep area (Red Sea) , 1973 .

[48]  R. Girdler A discussion on the structure and evolution of the Red Sea and the nature of the Red Sea, Gulf of Aden and Ethiopia rift junction - A review of Red Sea heat flow , 1970, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[49]  J. Turner,et al.  A Physical Interpretation of the Observations of Hot Brine Layers in the Red Sea , 1969 .

[50]  D. Ross,et al.  Third Brine Pool in the Red Sea , 1967, Nature.

[51]  H. Kornberg The role and control of the glyoxylate cycle in Escherichia coli. , 1966, The Biochemical journal.

[52]  A. Miller,et al.  Hot brines and recent iron deposits in deeps of the Red Sea , 1966 .

[53]  J. Crease,et al.  Hot Salty Water at the Bottom of the Red Sea , 1965, Nature.

[54]  Supplemental Information 2: Kyoto Encyclopedia of genes and genomes. , 2022 .