An Approximate Dual Subgradient Algorithm for Multi-Agent Non-Convex Optimization

We consider a multi-agent optimization problem where agents subject to local, intermittent interactions aim to minimize a sum of local objective functions subject to a global inequality constraint and a global state constraint set. In contrast to previous work, we do not require that the objective, constraint functions, and state constraint sets are convex. In order to deal with time-varying network topologies satisfying a standard connectivity assumption, we resort to consensus algorithm techniques and the Lagrangian duality method. We slightly relax the requirement of exact consensus, and propose a distributed approximate dual subgradient algorithm to enable agents to asymptotically converge to a pair of primal-dual solutions to an approximate problem. To guarantee convergence, we assume that the Slater's condition is satisfied and the optimal solution set of the dual limit is singleton. We implement our algorithm over a source localization problem and compare the performance with existing algorithms.

[1]  Regina S. Burachik On primal convergence for augmented Lagrangian duality , 2011 .

[2]  Michael Patriksson,et al.  Ergodic, primal convergence in dual subgradient schemes for convex programming , 1999, Mathematical programming.

[3]  Robert D. Nowak,et al.  Quantized incremental algorithms for distributed optimization , 2005, IEEE Journal on Selected Areas in Communications.

[4]  Stephen P. Boyd,et al.  A scheme for robust distributed sensor fusion based on average consensus , 2005, IPSN 2005. Fourth International Symposium on Information Processing in Sensor Networks, 2005..

[5]  Sonia Martínez,et al.  An approximate dual subgradient algorithm for multi-agent non-convex optimization , 2010, 49th IEEE Conference on Decision and Control (CDC).

[6]  Sonia Martínez,et al.  On Distributed Convex Optimization Under Inequality and Equality Constraints , 2010, IEEE Transactions on Automatic Control.

[7]  Panos M. Pardalos,et al.  Quadratic programming with one negative eigenvalue is NP-hard , 1991, J. Glob. Optim..

[8]  Asuman E. Ozdaglar,et al.  Constrained Consensus and Optimization in Multi-Agent Networks , 2008, IEEE Transactions on Automatic Control.

[9]  Panos M. Pardalos,et al.  Convex optimization theory , 2010, Optim. Methods Softw..

[10]  John N. Tsitsiklis,et al.  Convergence Speed in Distributed Consensus and Averaging , 2009, SIAM J. Control. Optim..

[11]  Jorge Cortés,et al.  Distributed Strategies for Generating Weight-Balanced and Doubly Stochastic Digraphs , 2009, Eur. J. Control.

[12]  Alexander S. Poznyak,et al.  Practical Stability of Time-Delay Systems: LMI's Approach , 2011, Eur. J. Control.

[13]  J. Gauthier,et al.  A simple observer for nonlinear systems applications to bioreactors , 1992 .

[14]  João M. F. Xavier,et al.  A convex relaxation for approximate maximum-likelihood 2D source localization from range measurements , 2010, 2010 IEEE International Conference on Acoustics, Speech and Signal Processing.

[15]  Asuman E. Ozdaglar,et al.  Distributed Subgradient Methods for Multi-Agent Optimization , 2009, IEEE Transactions on Automatic Control.

[16]  John N. Tsitsiklis,et al.  Convergence Speed in Distributed Consensus and Averaging , 2009, SIAM J. Control. Optim..

[17]  Regina S. Burachik,et al.  An update rule and a convergence result for a penalty function method , 2007 .

[18]  R. Srikant,et al.  Quantized Consensus , 2006, 2006 IEEE International Symposium on Information Theory.

[19]  Sonia Martínez,et al.  Coverage control for mobile sensing networks , 2002, IEEE Transactions on Robotics and Automation.

[20]  Leonid M. Fridman,et al.  Robust semiglobal stabilization of the second order system by relay feedback with an uncertain variable time delay , 2004, 2008 47th IEEE Conference on Decision and Control.

[21]  John N. Tsitsiklis,et al.  Parallel and distributed computation , 1989 .

[22]  Minghui Zhu,et al.  Dynamic average consensus on synchronous communication networks , 2008, 2008 American Control Conference.

[23]  Derong Liu The Mathematics of Internet Congestion Control , 2005, IEEE Transactions on Automatic Control.

[24]  Salim Ibrir,et al.  Adaptive observers for time-delay nonlinear systems in triangular form , 2009, Autom..

[25]  A. Robert Calderbank,et al.  Layering as Optimization Decomposition: A Mathematical Theory of Network Architectures , 2007, Proceedings of the IEEE.

[26]  Angelia Nedic,et al.  Distributed and Recursive Parameter Estimation in Parametrized Linear State-Space Models , 2008, IEEE Transactions on Automatic Control.

[27]  Emilia Fridman,et al.  Stability of systems with uncertain delays: a new "Complete" Lyapunov-krasovskii functional , 2006, IEEE Transactions on Automatic Control.

[28]  Alfredo Germani,et al.  An asymptotic state observer for a class of nonlinear delay systems , 2001, Kybernetika.

[29]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[30]  Luca Geretti,et al.  A Mixed Convex/Nonconvex Distributed Localization Approach for the Deployment of Indoor Positioning Services , 2008, IEEE Transactions on Mobile Computing.

[31]  Dimitri P. Bertsekas,et al.  Convex Analysis and Optimization , 2003 .

[32]  Hanif D. Sherali,et al.  Solutions and optimality criteria for nonconvex constrained global optimization problems with connections between canonical and Lagrangian duality , 2009, J. Glob. Optim..

[33]  Joachim Rudolph,et al.  Flatness-based control of nonlinear delay systems: A chemical reactor example , 1998 .

[34]  Asuman E. Ozdaglar,et al.  Approximate Primal Solutions and Rate Analysis for Dual Subgradient Methods , 2008, SIAM J. Optim..

[35]  Luc Moreau,et al.  Stability of multiagent systems with time-dependent communication links , 2005, IEEE Transactions on Automatic Control.

[36]  Stephen P. Boyd,et al.  Randomized gossip algorithms , 2006, IEEE Transactions on Information Theory.

[37]  Kouhei Ohnishi,et al.  A Design Method of Communication Disturbance Observer for Time-Delay Compensation, Taking the Dynamic Property of Network Disturbance Into Account , 2008, IEEE Transactions on Industrial Electronics.

[38]  R. Tyrrell Rockafellar,et al.  Augmented Lagrangians and Applications of the Proximal Point Algorithm in Convex Programming , 1976, Math. Oper. Res..

[39]  Karl Henrik Johansson,et al.  Subgradient methods and consensus algorithms for solving convex optimization problems , 2008, 2008 47th IEEE Conference on Decision and Control.

[40]  T. Floquet,et al.  A sliding mode observer for linear systems with unknown time varying delay , 2007, 2007 American Control Conference.

[42]  Frank Kelly,et al.  Rate control for communication networks: shadow prices, proportional fairness and stability , 1998, J. Oper. Res. Soc..

[43]  N. Macdonald Time lags in biological models , 1978 .

[44]  Bastian Goldlücke,et al.  Variational Analysis , 2014, Computer Vision, A Reference Guide.

[45]  Richard M. Murray,et al.  Information flow and cooperative control of vehicle formations , 2004, IEEE Transactions on Automatic Control.

[46]  Jie Lin,et al.  Coordination of groups of mobile autonomous agents using nearest neighbor rules , 2003, IEEE Trans. Autom. Control..

[47]  Richard M. Murray,et al.  Consensus problems in networks of agents with switching topology and time-delays , 2004, IEEE Transactions on Automatic Control.

[48]  Michael Rabbat,et al.  Decentralized source localization and tracking , 2004 .

[49]  N. N. Krasovskii,et al.  On the analytic construction of an optimal control in a system with time lags , 1962 .

[50]  J. Hiriart-Urruty,et al.  Convex analysis and minimization algorithms , 1993 .

[51]  Robert D. Nowak,et al.  Distributed EM algorithms for density estimation and clustering in sensor networks , 2003, IEEE Trans. Signal Process..

[52]  Randal W. Beard,et al.  Distributed Consensus in Multi-vehicle Cooperative Control - Theory and Applications , 2007, Communications and Control Engineering.

[53]  Sonia Martínez,et al.  Discrete-time dynamic average consensus , 2010, Autom..

[54]  Zdzisław Denkowski,et al.  Set-Valued Analysis , 2021 .