Landau Damping: Paraproducts and Gevrey Regularity
暂无分享,去创建一个
[1] A. Vlasov,et al. The vibrational properties of an electron gas , 1967, Uspekhi Fizicheskih Nauk.
[2] B. Helffer,et al. From resolvent bounds to semigroup bounds , 2010, 1001.4171.
[3] V. Arnold,et al. Topological methods in hydrodynamics , 1998 .
[4] V. Maslov,et al. THE LINEAR THEORY OF LANDAU DAMPING , 1986 .
[5] C. Driscoll,et al. Observation of Diocotron Wave Echoes in a Pure Electron Plasma. , 2002 .
[6] R. Nagel,et al. One-parameter semigroups for linear evolution equations , 1999 .
[7] Matthias Günther,et al. Isometric Embeddings of Riemannian Manifolds , 2010 .
[8] H. Morita,et al. Large time behavior and asymptotic stability of the 2D Euler and linearized Euler equations , 2009, 0905.1551.
[9] Pierre-Louis Lions,et al. Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system , 1991 .
[10] M. Kruskal,et al. Exact Nonlinear Plasma Oscillations , 1957 .
[11] Yan Guo,et al. Unstable and Stable Galaxy Models , 2007, 0704.1012.
[12] Louis Nirenberg,et al. An abstract form of the nonlinear Cauchy-Kowalewski theorem , 1972 .
[13] Cl'ement Mouhot. Stabilit\'e orbitale pour le syst\`eme de Vlasov-Poisson gravitationnel , 2012, 1201.2275.
[14] T. M. O'Neil,et al. Plasma wave echo experiment , 1968 .
[15] Isabelle Gallagher,et al. Global regularity for some classes of large solutions to the Navier-Stokes equations , 2008, 0807.1265.
[16] Sergiu Klainerman,et al. Long-time behavior of solutions to nonlinear evolution equations , 1982 .
[17] Jan Prüss,et al. On the spectrum of ₀-semigroups , 1984 .
[18] N. Masmoudi. FROM VLASOV-POISSON SYSTEM TO THE INCOMPRESSIBLE EULER SYSTEM , 2001 .
[19] Jack Schaeffer,et al. On time decay rates in landau damping , 1995 .
[20] N. Balmforth,et al. Normal modes and continuous spectra , 1994 .
[21] Roy W. Gould,et al. PLASMA WAVE ECHO. , 1967 .
[22] N. Wiener,et al. Fourier Transforms in the Complex Domain , 1934 .
[23] G. Burton. Sobolev Spaces , 2013 .
[24] Jacques Vanneste,et al. Nonlinear Dynamics of Anisotropic Disturbances in Plane Couette Flow , 2002, SIAM J. Appl. Math..
[25] V. Vicol,et al. On Inviscid Limits for the Stochastic Navier–Stokes Equations and Related Models , 2013, 1302.0542.
[26] Marcel Oliver,et al. Analyticity of Solutions for a Generalized Euler Equation , 1997 .
[27] S. Tremaine,et al. Galactic Dynamics , 2005 .
[28] O. Penrose. Electrostatic Instabilities of a Uniform Non‐Maxwellian Plasma , 1960 .
[29] Zhiwu Lin,et al. Small BGK Waves and Nonlinear Landau Damping , 2010, 1003.3005.
[30] Dmitri D. Ryutov,et al. Landau damping: half a century with the great discovery , 1999 .
[31] R. Danchin,et al. Fourier Analysis and Nonlinear Partial Differential Equations , 2011 .
[32] Maurice Gevrey,et al. Sur la nature analytique des solutions des équations aux dérivées partielles. Premier mémoire , 1918 .
[33] G. Backus. Linearized Plasma Oscillations in Arbitrary Electron Velocity Distributions , 1960 .
[34] J. Moser. A rapidly convergent iteration method and non-linear partial differential equations - I , 1966 .
[35] P. Germain,et al. Global solutions for the gravity water waves equation in dimension 3 , 2009, 0906.5343.
[36] N. Masmoudi,et al. Inviscid damping and the asymptotic stability of planar shear flows in the 2D Euler equations , 2013, 1306.5028.
[37] L. C. Woods. Physics of plasmas , 2003 .
[38] J. Nash. The imbedding problem for Riemannian manifolds , 1956 .
[39] D. Schecter,et al. Inviscid damping of asymmetries on a two-dimensional vortex , 2000 .
[40] L. Boltzmann. Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen , 1970 .
[41] T. M. O'Neil,et al. Phase mixing and echoes in a pure electron plasma , 2005 .
[42] J. Velázquez,et al. On the Existence of Exponentially Decreasing Solutions of the Nonlinear Landau Damping Problem , 2008, 0810.3456.
[43] Joseph P. Dougherty,et al. Waves in plasmas. , 1993 .
[44] R. Nagel,et al. One-parameter Semigroups of Positive Operators , 1986 .
[45] Helly. Fourier transforms in the complex domain , 1936 .
[46] G. B.. The Dynamical Theory of Gases , 1916, Nature.
[47] N. A. Krall,et al. Principles of Plasma Physics , 1973 .
[48] P. H. Chavanis. Statistical Mechanics of Violent Relaxation in Stellar Systems , 2002 .
[49] N. Balmforth,et al. Pattern formation in Hamiltonian systems with continuous spectra; a normal-form single-wave model , 2013, 1303.0065.
[50] Nader Masmoudi,et al. Asymptotic stability for the Couette flow in the 2D Euler equations , 2013, 1309.2035.
[51] Vlad Vicol,et al. Enhanced dissipation and inviscid damping in the inviscid limit of the Navier-Stokes equations near the 2 D Couette flow , 2014 .
[52] M. Lemou,et al. Orbital stability of spherical galactic models , 2010, Inventiones mathematicae.
[53] J. Bony,et al. Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires , 1980 .
[54] W. Thomson,et al. XXI. Stability of fluid motion (continued from the May and June numbers).—Rectilineal motion of viscous fluid between two parallel planes , 1887 .
[55] I. Kukavica,et al. On the radius of analyticity of solutions to the three-dimensional Euler equations , 2008 .
[56] Nader Masmoudi,et al. Well-posedness for the Prandtl system without analyticity or monotonicity , 2013 .
[57] Cl'ement Mouhot,et al. On Landau damping , 2009, 0904.2760.
[58] Jack Schaeffer,et al. Time decay for solutions to the linearized Vlasov equation , 1994 .
[59] Pierre Raphael,et al. The Orbital Stability of the Ground States and the Singularity Formation for the Gravitational Vlasov Poisson System , 2008 .
[60] G. Backus. Linearized Plasma Oscillations in Arbitrary Electron Distributions , 1960 .
[61] N. Balmforth. Hamiltonian description of shear flow , 2022 .
[62] M. Günther. Zum Einbettungssatz von J. Nash , 1989 .
[63] C. B. Wharton,et al. COLLISIONLESS DAMPING OF ELECTROSTATIC PLASMA WAVES , 1964 .
[64] N. Balmforth,et al. Singular eigenfunctions for shearing fluids I , 1995 .
[65] P. Morrison,et al. Hamiltonian description of the ideal fluid , 1998 .
[66] S. Benachour. Analyticité des solutions des équations de Vlassov-Poisson , 1989 .
[67] Global Existence for the Einstein Vacuum Equations in Wave Coordinates , 2003, math/0312479.
[68] Y. Brenier,et al. convergence of the vlasov-poisson system to the incompressible euler equations , 2000 .
[69] R. Temam,et al. Gevrey class regularity for the solutions of the Navier-Stokes equations , 1989 .
[70] L. Rayleigh. On the Stability, or Instability, of certain Fluid Motions , 1879 .
[71] K. Pfaffelmoser,et al. Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data , 1992 .
[72] Chongchun Zeng,et al. Inviscid Dynamical Structures Near Couette Flow , 2010, 1004.5149.
[73] E. Horst,et al. On the asymptotic growth of the solutions of the vlasov–poisson system , 1993 .
[74] L. Hörmander. The Nash-Moser Theorem and Paradifferential Operators , 1990 .
[75] J. Vanneste,et al. Strong echo effect and nonlinear transient growth in shear flows , 1998 .
[76] Jack Schaeffer,et al. Global existence of smooth solutions to the vlasov poisson system in three dimensions , 1991 .
[77] D. Lynden-Bell. The Stability and Vibrations of a Gas of Stars , 1962 .
[78] N. G. Van Kampen,et al. On the theory of stationary waves in plasmas , 1955 .
[79] R. Levy,et al. Role of Landau damping in crossed-field electron beams and inviscid shear flow , 1970 .
[80] J. Prüss. On the Spectrum of C 0 -Semigroups , 1984 .
[81] Matthias Günthier,et al. On the perturbation problem associated to isometric embeddings of Riemannian manifolds , 1989 .
[82] Emanuele Caglioti,et al. Time Asymptotics for Solutions of Vlasov–Poisson Equation in a Circle , 1998 .
[83] Takaaki Nishida,et al. A note on a theorem of Nirenberg , 1977 .
[84] P. Morrison. Hamiltonian description of Vlasov dynamics: Action-angle variables for the continuous spectrum , 1999 .
[85] Larry Gearhart,et al. Spectral theory for contraction semigroups on Hilbert space , 1978 .