Landau Damping: Paraproducts and Gevrey Regularity

We give a new, simpler, but also and most importantly more general and robust, proof of nonlinear Landau damping on $${\mathbb {T}}^d$$Td in Gevrey$$-\frac{1}{s}$$-1s regularity ($$s > 1/3$$s>1/3) which matches the regularity requirement predicted by the formal analysis of Mouhot and Villani [67]. Our proof combines in a novel way ideas from the original proof of Landau damping Mouhot and Villani [67] and the proof of inviscid damping in 2D Euler Bedrossian and Masmoudi [10]. As in Bedrossian and Masmoudi [10], we use paraproduct decompositions and controlled regularity loss along time to replace the Newton iteration scheme of Mouhot and Villani [67]. We perform time-response estimates adapted from Mouhot and Villani [67] to control the plasma echoes and couple them to energy estimates on the distribution function in the style of the work Bedrossian and Masmoudi [10]. We believe the work is an important step forward in developing a systematic theory of phase mixing in infinite dimensional Hamiltonian systems.

[1]  A. Vlasov,et al.  The vibrational properties of an electron gas , 1967, Uspekhi Fizicheskih Nauk.

[2]  B. Helffer,et al.  From resolvent bounds to semigroup bounds , 2010, 1001.4171.

[3]  V. Arnold,et al.  Topological methods in hydrodynamics , 1998 .

[4]  V. Maslov,et al.  THE LINEAR THEORY OF LANDAU DAMPING , 1986 .

[5]  C. Driscoll,et al.  Observation of Diocotron Wave Echoes in a Pure Electron Plasma. , 2002 .

[6]  R. Nagel,et al.  One-parameter semigroups for linear evolution equations , 1999 .

[7]  Matthias Günther,et al.  Isometric Embeddings of Riemannian Manifolds , 2010 .

[8]  H. Morita,et al.  Large time behavior and asymptotic stability of the 2D Euler and linearized Euler equations , 2009, 0905.1551.

[9]  Pierre-Louis Lions,et al.  Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system , 1991 .

[10]  M. Kruskal,et al.  Exact Nonlinear Plasma Oscillations , 1957 .

[11]  Yan Guo,et al.  Unstable and Stable Galaxy Models , 2007, 0704.1012.

[12]  Louis Nirenberg,et al.  An abstract form of the nonlinear Cauchy-Kowalewski theorem , 1972 .

[13]  Cl'ement Mouhot Stabilit\'e orbitale pour le syst\`eme de Vlasov-Poisson gravitationnel , 2012, 1201.2275.

[14]  T. M. O'Neil,et al.  Plasma wave echo experiment , 1968 .

[15]  Isabelle Gallagher,et al.  Global regularity for some classes of large solutions to the Navier-Stokes equations , 2008, 0807.1265.

[16]  Sergiu Klainerman,et al.  Long-time behavior of solutions to nonlinear evolution equations , 1982 .

[17]  Jan Prüss,et al.  On the spectrum of ₀-semigroups , 1984 .

[18]  N. Masmoudi FROM VLASOV-POISSON SYSTEM TO THE INCOMPRESSIBLE EULER SYSTEM , 2001 .

[19]  Jack Schaeffer,et al.  On time decay rates in landau damping , 1995 .

[20]  N. Balmforth,et al.  Normal modes and continuous spectra , 1994 .

[21]  Roy W. Gould,et al.  PLASMA WAVE ECHO. , 1967 .

[22]  N. Wiener,et al.  Fourier Transforms in the Complex Domain , 1934 .

[23]  G. Burton Sobolev Spaces , 2013 .

[24]  Jacques Vanneste,et al.  Nonlinear Dynamics of Anisotropic Disturbances in Plane Couette Flow , 2002, SIAM J. Appl. Math..

[25]  V. Vicol,et al.  On Inviscid Limits for the Stochastic Navier–Stokes Equations and Related Models , 2013, 1302.0542.

[26]  Marcel Oliver,et al.  Analyticity of Solutions for a Generalized Euler Equation , 1997 .

[27]  S. Tremaine,et al.  Galactic Dynamics , 2005 .

[28]  O. Penrose Electrostatic Instabilities of a Uniform Non‐Maxwellian Plasma , 1960 .

[29]  Zhiwu Lin,et al.  Small BGK Waves and Nonlinear Landau Damping , 2010, 1003.3005.

[30]  Dmitri D. Ryutov,et al.  Landau damping: half a century with the great discovery , 1999 .

[31]  R. Danchin,et al.  Fourier Analysis and Nonlinear Partial Differential Equations , 2011 .

[32]  Maurice Gevrey,et al.  Sur la nature analytique des solutions des équations aux dérivées partielles. Premier mémoire , 1918 .

[33]  G. Backus Linearized Plasma Oscillations in Arbitrary Electron Velocity Distributions , 1960 .

[34]  J. Moser A rapidly convergent iteration method and non-linear partial differential equations - I , 1966 .

[35]  P. Germain,et al.  Global solutions for the gravity water waves equation in dimension 3 , 2009, 0906.5343.

[36]  N. Masmoudi,et al.  Inviscid damping and the asymptotic stability of planar shear flows in the 2D Euler equations , 2013, 1306.5028.

[37]  L. C. Woods Physics of plasmas , 2003 .

[38]  J. Nash The imbedding problem for Riemannian manifolds , 1956 .

[39]  D. Schecter,et al.  Inviscid damping of asymmetries on a two-dimensional vortex , 2000 .

[40]  L. Boltzmann Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen , 1970 .

[41]  T. M. O'Neil,et al.  Phase mixing and echoes in a pure electron plasma , 2005 .

[42]  J. Velázquez,et al.  On the Existence of Exponentially Decreasing Solutions of the Nonlinear Landau Damping Problem , 2008, 0810.3456.

[43]  Joseph P. Dougherty,et al.  Waves in plasmas. , 1993 .

[44]  R. Nagel,et al.  One-parameter Semigroups of Positive Operators , 1986 .

[45]  Helly Fourier transforms in the complex domain , 1936 .

[46]  G. B. The Dynamical Theory of Gases , 1916, Nature.

[47]  N. A. Krall,et al.  Principles of Plasma Physics , 1973 .

[48]  P. H. Chavanis Statistical Mechanics of Violent Relaxation in Stellar Systems , 2002 .

[49]  N. Balmforth,et al.  Pattern formation in Hamiltonian systems with continuous spectra; a normal-form single-wave model , 2013, 1303.0065.

[50]  Nader Masmoudi,et al.  Asymptotic stability for the Couette flow in the 2D Euler equations , 2013, 1309.2035.

[51]  Vlad Vicol,et al.  Enhanced dissipation and inviscid damping in the inviscid limit of the Navier-Stokes equations near the 2 D Couette flow , 2014 .

[52]  M. Lemou,et al.  Orbital stability of spherical galactic models , 2010, Inventiones mathematicae.

[53]  J. Bony,et al.  Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires , 1980 .

[54]  W. Thomson,et al.  XXI. Stability of fluid motion (continued from the May and June numbers).—Rectilineal motion of viscous fluid between two parallel planes , 1887 .

[55]  I. Kukavica,et al.  On the radius of analyticity of solutions to the three-dimensional Euler equations , 2008 .

[56]  Nader Masmoudi,et al.  Well-posedness for the Prandtl system without analyticity or monotonicity , 2013 .

[57]  Cl'ement Mouhot,et al.  On Landau damping , 2009, 0904.2760.

[58]  Jack Schaeffer,et al.  Time decay for solutions to the linearized Vlasov equation , 1994 .

[59]  Pierre Raphael,et al.  The Orbital Stability of the Ground States and the Singularity Formation for the Gravitational Vlasov Poisson System , 2008 .

[60]  G. Backus Linearized Plasma Oscillations in Arbitrary Electron Distributions , 1960 .

[61]  N. Balmforth Hamiltonian description of shear flow , 2022 .

[62]  M. Günther Zum Einbettungssatz von J. Nash , 1989 .

[63]  C. B. Wharton,et al.  COLLISIONLESS DAMPING OF ELECTROSTATIC PLASMA WAVES , 1964 .

[64]  N. Balmforth,et al.  Singular eigenfunctions for shearing fluids I , 1995 .

[65]  P. Morrison,et al.  Hamiltonian description of the ideal fluid , 1998 .

[66]  S. Benachour Analyticité des solutions des équations de Vlassov-Poisson , 1989 .

[67]  Global Existence for the Einstein Vacuum Equations in Wave Coordinates , 2003, math/0312479.

[68]  Y. Brenier,et al.  convergence of the vlasov-poisson system to the incompressible euler equations , 2000 .

[69]  R. Temam,et al.  Gevrey class regularity for the solutions of the Navier-Stokes equations , 1989 .

[70]  L. Rayleigh On the Stability, or Instability, of certain Fluid Motions , 1879 .

[71]  K. Pfaffelmoser,et al.  Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data , 1992 .

[72]  Chongchun Zeng,et al.  Inviscid Dynamical Structures Near Couette Flow , 2010, 1004.5149.

[73]  E. Horst,et al.  On the asymptotic growth of the solutions of the vlasov–poisson system , 1993 .

[74]  L. Hörmander The Nash-Moser Theorem and Paradifferential Operators , 1990 .

[75]  J. Vanneste,et al.  Strong echo effect and nonlinear transient growth in shear flows , 1998 .

[76]  Jack Schaeffer,et al.  Global existence of smooth solutions to the vlasov poisson system in three dimensions , 1991 .

[77]  D. Lynden-Bell The Stability and Vibrations of a Gas of Stars , 1962 .

[78]  N. G. Van Kampen,et al.  On the theory of stationary waves in plasmas , 1955 .

[79]  R. Levy,et al.  Role of Landau damping in crossed-field electron beams and inviscid shear flow , 1970 .

[80]  J. Prüss On the Spectrum of C 0 -Semigroups , 1984 .

[81]  Matthias Günthier,et al.  On the perturbation problem associated to isometric embeddings of Riemannian manifolds , 1989 .

[82]  Emanuele Caglioti,et al.  Time Asymptotics for Solutions of Vlasov–Poisson Equation in a Circle , 1998 .

[83]  Takaaki Nishida,et al.  A note on a theorem of Nirenberg , 1977 .

[84]  P. Morrison Hamiltonian description of Vlasov dynamics: Action-angle variables for the continuous spectrum , 1999 .

[85]  Larry Gearhart,et al.  Spectral theory for contraction semigroups on Hilbert space , 1978 .