Quasi-Newton minimization for the p(x)-Laplacian problem

We propose a quasi-Newton minimization approach for the solution of the p ( x ) -Laplacian elliptic problem, x ź ź ź R m . This method outperforms those existing for the p ( x ) -variable case, which are based on general purpose minimizers such as BFGS. Moreover, when compared to ad hoc techniques available in literature for the p -constant case, and usually referred to as "mesh independent", the present method turns out to be generally superior thanks to better descent directions given by the quadratic model.

[1]  Tadeusz Iwaniec,et al.  Regularity of p-harmonic functions on the plane. , 1989 .

[2]  John W. Barrett,et al.  Finite element approximation of the p-Laplacian , 1993 .

[3]  Carl Tim Kelley,et al.  Iterative methods for optimization , 1999, Frontiers in applied mathematics.

[4]  Peter Hästö,et al.  Overview of differential equations with non-standard growth , 2010 .

[5]  Ariel L. Lombardi,et al.  Interior Penalty Discontinuous Galerkin FEM for the p(x)-Laplacian , 2010, SIAM J. Numer. Anal..

[6]  Lars Diening,et al.  Finite Element Approximation of the p(·)-Laplacian , 2015, SIAM J. Numer. Anal..

[7]  Reza Ghanbari,et al.  A hybridization of the Polak-Ribière-Polyak and Fletcher-Reeves conjugate gradient methods , 2014, Numerical Algorithms.

[8]  Yunqing Huang,et al.  PRECONDITIONED HYBRID CONJUGATE GRADIENT ALGORITHM FOR P-LAPLACIAN , 2005 .

[9]  Leandro M. Del Pezzo,et al.  Order of convergence of the finite element method for the p(x)-Laplacian , 2013, 1311.3230.

[10]  Rodolfo Bermejo,et al.  A Multigrid Algorithm for the p-Laplacian , 1999, SIAM J. Sci. Comput..

[11]  John W. Barrett,et al.  Bean's critical-state model as the p → limit of an evolutionary p -Laplacian equation , 2000 .

[12]  G. Bouchitté,et al.  A p-Laplacian Approximation for Some Mass Optimization Problems , 2003 .

[13]  Ruo Li,et al.  Preconditioned Descent Algorithms for p-Laplacian , 2007, J. Sci. Comput..

[14]  S. Zuccher,et al.  The Inverse Power Method for the p ( x ) -Laplacian Problem , 2014 .

[15]  Marco Caliari,et al.  The Inverse Power Method for the $$p(x)$$p(x)-Laplacian Problem , 2015, J. Sci. Comput..

[16]  Erik M. Bollt,et al.  Graduated adaptive image denoising: local compromise between total variation and isotropic diffusion , 2009, Adv. Comput. Math..

[17]  P. Hästö,et al.  Lebesgue and Sobolev Spaces with Variable Exponents , 2011 .

[18]  Jed Brown,et al.  Computing the First Eigenpair of the p-Laplacian via Inverse Iteration of Sublinear Supersolutions , 2010, J. Sci. Comput..

[19]  Adrian Hirn,et al.  Finite element approximation of singular power-law systems , 2013, Math. Comput..

[21]  M. Ruzicka,et al.  Electrorheological Fluids: Modeling and Mathematical Theory , 2000 .

[22]  Frédéric Hecht,et al.  New development in freefem++ , 2012, J. Num. Math..

[23]  Lars Diening,et al.  Convergence analysis for a finite element approximation of a steady model for electrorheological fluids , 2014, Numerische Mathematik.

[24]  Kumbakonam R. Rajagopal,et al.  On the modeling of electrorheological materials , 1996 .

[25]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[26]  M. Boncuţ,et al.  Finite element approximation of the , 2004 .

[27]  Yunmei Chen,et al.  Variable Exponent, Linear Growth Functionals in Image Restoration , 2006, SIAM J. Appl. Math..