Quasi-Newton minimization for the p(x)-Laplacian problem
暂无分享,去创建一个
[1] Tadeusz Iwaniec,et al. Regularity of p-harmonic functions on the plane. , 1989 .
[2] John W. Barrett,et al. Finite element approximation of the p-Laplacian , 1993 .
[3] Carl Tim Kelley,et al. Iterative methods for optimization , 1999, Frontiers in applied mathematics.
[4] Peter Hästö,et al. Overview of differential equations with non-standard growth , 2010 .
[5] Ariel L. Lombardi,et al. Interior Penalty Discontinuous Galerkin FEM for the p(x)-Laplacian , 2010, SIAM J. Numer. Anal..
[6] Lars Diening,et al. Finite Element Approximation of the p(·)-Laplacian , 2015, SIAM J. Numer. Anal..
[7] Reza Ghanbari,et al. A hybridization of the Polak-Ribière-Polyak and Fletcher-Reeves conjugate gradient methods , 2014, Numerical Algorithms.
[8] Yunqing Huang,et al. PRECONDITIONED HYBRID CONJUGATE GRADIENT ALGORITHM FOR P-LAPLACIAN , 2005 .
[9] Leandro M. Del Pezzo,et al. Order of convergence of the finite element method for the p(x)-Laplacian , 2013, 1311.3230.
[10] Rodolfo Bermejo,et al. A Multigrid Algorithm for the p-Laplacian , 1999, SIAM J. Sci. Comput..
[11] John W. Barrett,et al. Bean's critical-state model as the p → limit of an evolutionary p -Laplacian equation , 2000 .
[12] G. Bouchitté,et al. A p-Laplacian Approximation for Some Mass Optimization Problems , 2003 .
[13] Ruo Li,et al. Preconditioned Descent Algorithms for p-Laplacian , 2007, J. Sci. Comput..
[14] S. Zuccher,et al. The Inverse Power Method for the p ( x ) -Laplacian Problem , 2014 .
[15] Marco Caliari,et al. The Inverse Power Method for the $$p(x)$$p(x)-Laplacian Problem , 2015, J. Sci. Comput..
[16] Erik M. Bollt,et al. Graduated adaptive image denoising: local compromise between total variation and isotropic diffusion , 2009, Adv. Comput. Math..
[17] P. Hästö,et al. Lebesgue and Sobolev Spaces with Variable Exponents , 2011 .
[18] Jed Brown,et al. Computing the First Eigenpair of the p-Laplacian via Inverse Iteration of Sublinear Supersolutions , 2010, J. Sci. Comput..
[19] Adrian Hirn,et al. Finite element approximation of singular power-law systems , 2013, Math. Comput..
[21] M. Ruzicka,et al. Electrorheological Fluids: Modeling and Mathematical Theory , 2000 .
[22] Frédéric Hecht,et al. New development in freefem++ , 2012, J. Num. Math..
[23] Lars Diening,et al. Convergence analysis for a finite element approximation of a steady model for electrorheological fluids , 2014, Numerische Mathematik.
[24] Kumbakonam R. Rajagopal,et al. On the modeling of electrorheological materials , 1996 .
[25] John E. Dennis,et al. Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.
[26] M. Boncuţ,et al. Finite element approximation of the , 2004 .
[27] Yunmei Chen,et al. Variable Exponent, Linear Growth Functionals in Image Restoration , 2006, SIAM J. Appl. Math..