A chronology of early Mars climatic evolution from impact crater degradation

[1] The degradation of impact craters provides a powerful tool to analyze surface processes in the Martian past. Previous studies concluded that large impact craters (20–200 km in diameter) were strongly degraded by fluvial erosion during early Martian history. Our goal is to study the progression of crater degradation through time with a particular emphasis on the craters with alluvial fans and on the relative chronology of these craters. The geometric properties of 283 craters of >20 km in diameter were analyzed in two highlands of Mars, north of Hellas Planitia, and south of Margaritifer Terra, both known to contain craters with alluvial fans. Three classes were defined from morphology: strongly degraded craters with fluvial landforms and without ejecta (type I), gently degraded craters with fluvial landforms and preserved ejecta (type II), and fresh craters with ejecta and no fluvial landforms (type III). Our main result is that the type II craters that present alluvial fans have characteristics closer to fresh craters (type III) than degraded craters (type I). The distinctive degradation characteristics of these classes allowed us to determine a temporal distribution: Type I craters were formed and degraded between ∼4 Gyr and ∼3.7 Gyr and type II craters with alluvial fans were formed between Early Hesperian and Early Amazonian (∼3.7 to ∼3.3 Gyr). This chronology is corroborated by crosscutting relationships of individual type II craters, which postdate Late Noachian valley networks. The sharp transition at ∼3.7 Gyr suggests a quick change in climatic conditions that could correspond to the cessation of the dynamo.

[1]  J. Papike,et al.  Chapter 5. LUNAR SAMPLES , 1998 .

[2]  J. Moore,et al.  Large alluvial fans on Mars , 2005 .

[3]  F. Leblanc,et al.  The combined effects of escape and magnetic field histories at Mars , 2007 .

[4]  W. Dietrich,et al.  Localized precipitation and runoff on Mars , 2010, 1012.5077.

[5]  James W. Head,et al.  Radial thickness variation in impact crater ejecta - Implications for lunar basin deposits , 1973 .

[6]  F. Poulet,et al.  Magnetic anomalies near Apollinaris Patera and the Medusae Fossae Formation in Lucus Planum, Mars , 2010 .

[7]  N. Mangold Fluvial landforms on fresh impact ejecta on Mars , 2012 .

[8]  D. Crown,et al.  Geologic evolution of the east rim of the Hellas basin Mars , 1991 .

[9]  N. Mangold Ice sublimation as a geomorphic process: A planetary perspective , 2011 .

[10]  G. Neukum,et al.  Topography of valley networks on Mars from Mars Express High Resolution Stereo Camera digital elevation models , 2008 .

[11]  J. Head,et al.  The timing of martian valley network activity : Constraints from buffered crater counting , 2008 .

[12]  M. Manga,et al.  Rapid decrease in Martian crustal magnetization in the Noachian era: Implications for the dynamo and climate of early Mars , 2008 .

[13]  V. Ansan,et al.  The origin and timing of fluvial activity at Eberswalde crater, Mars , 2012 .

[14]  D. Wilhelms Comparison of Martian and lunar multiringed circular basins , 1973 .

[15]  Alan D. Howard,et al.  An Intense Terminal Epoch of Widespread Fluvial Activity on Early Mars: 2. Increased Runoff and Paleolake Development , 2005 .

[16]  J. Grant,et al.  Geomorphic and stratigraphic analysis of Crater Terby and layered deposits north of Hellas basin, Mars , 2007 .

[17]  N. Mangold Geomorphic analysis of lobate debris aprons on Mars at Mars Orbiter Camera scale: Evidence for ice sublimation initiated by fractures , 2003 .

[18]  V. Ansan,et al.  Detailed study of an hydrological system of valleys, a delta and lakes in the Southwest Thaumasia region, Mars , 2006 .

[19]  S. Murchie,et al.  Stratigraphy, mineralogy, and origin of layered deposits inside Terby crater, Mars , 2011 .

[20]  A. McEwen,et al.  Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (HiRISE) , 2007 .

[21]  H. Melosh,et al.  A geomorphic analysis of Hale crater, Mars: The effects of impact into ice-rich crust , 2011 .

[22]  A. McEwen,et al.  Morphology and Composition of the Surface of Mars: Mars Odyssey THEMIS Results , 2003, Science.

[23]  Kevin R. Housen,et al.  Impact Cratering: A Geologic Process , 1987 .

[24]  V. Gulick,et al.  Ancient oceans, ice sheets and the hydrological cycle on Mars , 1991, Nature.

[25]  L. Edwards,et al.  Context Camera Investigation on board the Mars Reconnaissance Orbiter , 2007 .

[26]  V. Gulick,et al.  Origin and evolution of valleys on Martian volcanoes , 1990 .

[27]  G. Neukum,et al.  Geomorphic study of fluvial landforms on the northern Valles Marineris plateau, Mars , 2008 .

[28]  V. Ansan,et al.  New observations of Warrego Valles, Mars: Evidence for precipitation and surface runoff , 2006 .

[29]  Boris A. Ivanov,et al.  Mars/Moon Cratering Rate Ratio Estimates , 2001 .

[30]  G. Neukum,et al.  Mineralogy of the Nili Fossae region with OMEGA/Mars Express data: 2. Aqueous alteration of the crust , 2007 .

[31]  James W. Head,et al.  Ejecta from large craters on the moon: Discussion , 1974 .

[32]  P. Allemand,et al.  Fluvial and lacustrine activity on layered deposits in Melas Chasma, Valles Marineris, Mars , 2005 .

[33]  G. Neukum,et al.  Fluvial morphology of Naktong Vallis, Mars: A late activity with multiple processes , 2009 .

[34]  William K. Hartmann,et al.  Cratering Chronology and the Evolution of Mars , 2001 .

[35]  M. Carr Channels and valleys on Mars: Cold climate features formed as a result of a thickening cryosphere , 1996 .

[36]  N. Barlow A review of Martian impact crater ejecta structures and their implications for target properties , 2005 .

[37]  Sanjeev Gupta,et al.  Timescales of alluvial fan development by precipitation on Mars , 2011 .

[38]  S. Murchie,et al.  Composition, Morphology, and Stratigraphy of Noachian Crust around the Isidis basin , 2009 .

[39]  D. Crown,et al.  Watershed modeling in the Tyrrhena Terra region of Mars , 2010 .

[40]  J. Dohm,et al.  Outflow channel sources, reactivation, and chaos formation, Xanthe Terra, Mars , 2005 .

[41]  E. Asphaug,et al.  Catalogue of large alluvial fans in martian impact craters , 2008 .

[42]  J. Head,et al.  Sequence and timing of conditions on early Mars , 2011 .

[43]  D. Mitchell,et al.  Unusual magnetic signature of the Hadriaca Patera Volcano: Implications for early Mars , 2006 .

[44]  R. Arvidson,et al.  Geologic setting and origin of Terra Meridiani hematite deposit on Mars , 2002 .

[45]  A. Colaprete,et al.  Environmental Effects of Large Impacts on Mars , 2002, Science.

[46]  S. Werner,et al.  Redefinition of the crater-density and absolute-age boundaries for the chronostratigraphic system of Mars , 2011 .

[47]  William K. Hartmann,et al.  Martian cratering 8: Isochron refinement and the chronology of Mars , 2005 .

[48]  R. Jaumann,et al.  HRSC: the High Resolution Stereo Camera of Mars Express , 2004 .

[49]  Alan D. Howard,et al.  The case for rainfall on a warm, wet early Mars , 2002 .

[50]  Jean-Pierre Bibring,et al.  Phyllosilicates in the Mawrth Vallis region of Mars , 2007 .

[51]  G. Neukum,et al.  formation and evolution of the chaotic terrains by subsidence and magmatism : Hydraotes Chaos, Mars. , 2008 .

[52]  David E. Smith,et al.  The global topography of Mars and implications for surface evolution. , 1999, Science.

[53]  Alan D. Howard,et al.  An intense terminal epoch of widespread fluvial activity on early Mars: 1. Valley network incision and associated deposits , 2005 .

[54]  J. Grant,et al.  Late alluvial fan formation in southern Margaritifer Terra, Mars , 2011 .

[55]  James W. Head,et al.  Geologic history of Mars , 2010 .

[56]  M. Chapman,et al.  Related Magma–Ice Interactions: Possible Origins of Chasmata, Chaos, and Surface Materials in Xanthe, Margaritifer, and Meridiani Terrae, Mars , 2002 .

[57]  O. Toon,et al.  The Formation of Martian River Valleys by Impacts , 2010 .

[58]  川上 紳一,et al.  Impact Cratering:A Geologic Process Oxford Monographs on Geology and Geophysics No.11 H.,J.MELOSH , 1989 .

[59]  R. E. Arvidson,et al.  Phyllosilicates on Mars and implications for early martian climate , 2005, Nature.

[60]  S. Squyres Urey prize lecture: Water on Mars , 1989 .

[61]  F. Poulet,et al.  Ismenius Cavus, Mars: A deep paleolake with phyllosilicate deposits , 2010 .

[62]  M. Malin,et al.  Evidence for recent groundwater seepage and surface runoff on Mars. , 2000, Science.

[63]  G. Schubert,et al.  Search for the global signature of the Martian dynamo , 2010 .

[64]  A. McEwen,et al.  HiRISE imaging of impact megabreccia and sub-meter aqueous strata in Holden Crater, Mars , 2008 .

[65]  K. Gwinner,et al.  Evolution and depositional environments of the Eberswalde fan delta, Mars , 2008 .

[66]  G. Neukum,et al.  Planetary surface dating from crater size-frequency distribution measurements: Partial resurfacing events and statistical age uncertainty , 2010 .

[67]  N. Mangold,et al.  Thermal properties of lobate ejecta in Syrtis Major, Mars: Implications for the mechanisms of formation , 2005 .

[68]  J. Moore,et al.  Late Hesperian to early Amazonian midlatitude Martian valleys: Evidence from Newton and Gorgonum basins , 2011 .

[69]  Joseph S. Levy,et al.  Concentric crater fill in the northern mid-latitudes of Mars: Formation processes and relationships to similar landforms of glacial origin , 2010 .

[70]  G. A. Young,et al.  Gosses bluff impact structure, australia. , 1972, Science.

[71]  Christophe Delacourt,et al.  Evidence for Precipitation on Mars from Dendritic Valleys in the Valles Marineris Area , 2004, Science.

[72]  R. Craddock,et al.  Resurfacing of the Martian Highlands in the Amenthes and Tyrrhena region , 1990 .

[73]  R. Craddock,et al.  Crater morphometry and modification in the Sinus Sabaeus and Margaritifer Sinus regions of Mars , 1997 .

[74]  Kenneth S Edgett,et al.  Evidence for Persistent Flow and Aqueous Sedimentation on Early Mars , 2003, Science.

[75]  R. J. Pike Ejecta from large craters on the moon: comments on the geometric model of McGetchin et al. , 1974 .

[76]  A. Colaprete,et al.  Modeling the environmental effects of moderate‐sized impacts on Mars , 2008 .

[77]  S. Werner The early martian evolution—Constraints from basin formation ages , 2008 .

[78]  Harold Garbeil,et al.  Geometric relationships of pristine Martian complex impact craters, and their implications to Mars geologic history , 2007 .

[79]  B. Langlais,et al.  A polar magnetic paleopole associated with Apollinaris Patera Mars , 2007 .

[80]  R. Craddock,et al.  CRATER DEGRADATION IN THE MARTIAN HIGHLANDS: MORPHOMETRIC ANALYSIS OF THE SINUS SABAEUS REGION AND SIMULATION MODELING SUGGEST FLUVIAL PROCESSES. N. Forsberg-Taylor , 2004 .

[81]  T. Encrenaz,et al.  Global Mineralogical and Aqueous Mars History Derived from OMEGA/Mars Express Data , 2006, Science.

[82]  V. Ansan,et al.  Characterization of fluvial activity in Parana Valles using different age-dating techniques , 2009 .

[83]  R. Craddock,et al.  Geomorphic evolution of the Martian highlands through ancient fluvial processes , 1993 .