Chiral nanoparticle assemblies: circular dichroism, plasmonic interactions, and exciton effects

The paper reviews recent progress on chiral nanocrystal assemblies with induced optical chirality and related circular dichroism. Many natural molecules and biomolecules are chiral and exhibit remarkably strong optical chirality (circular dichroism) due to their amazingly uniform atomic composition in a large ensemble. It is challenging to realize artificial nanoscale systems with optical chirality since the atomic structure of artificial nanostructures may not be always controlled or even known. Nevertheless, the artificial optical chirality has been accomplished and it is the main scope of this review. In particular, we discuss assemblies incorporating chiral molecules, metal nanocrystals, and semiconductor quantum dots. Plasmon-induced and plasmon-enhanced circular dichroism effects appear in nanoscale assemblies built with metal nanocrystals, while excitonic and surface-states related phenomena are observed in semiconductor quantum dots conjugated with chiral molecules.

[1]  Felice Shieh,et al.  General shape control of colloidal CdS, CdSe, CdTe quantum rods and quantum rod heterostructures. , 2005, The journal of physical chemistry. B.

[2]  Joseph M Slocik,et al.  Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: plasmon enhancement, dipole interactions, and dielectric effects. , 2010, Nano letters.

[3]  Nicholas A Kotov,et al.  Chiral luminescent CdS nano-tetrapods. , 2010, Chemical communications.

[4]  K. Záruba,et al.  Supramolecular chirality of cysteine modified silver nanoparticles , 2011 .

[5]  J. Donegan,et al.  "Jelly dots": synthesis and cytotoxicity studies of CdTe quantum dot-gelatin nanocomposites. , 2007, Small.

[6]  Zhiyong Tang,et al.  Chiral inorganic nanoparticles: origin, optical properties and bioapplications. , 2011, Nanoscale.

[7]  J. Gilman,et al.  Nanotechnology , 2001 .

[8]  Terry J. Smith,et al.  Long-term exposure of CdTe quantum dots on PC12 cellular activity and the determination of optimum non-toxic concentrations for biological use , 2010, Journal of nanobiotechnology.

[9]  G. Fasman Circular Dichroism and the Conformational Analysis of Biomolecules , 1996, Springer US.

[10]  U. Fano Effects of Configuration Interaction on Intensities and Phase Shifts , 1961 .

[11]  Chad A. Mirkin,et al.  The Structural Characterization of Oligonucleotide-Modified Gold Nanoparticle Networks Formed by DNA Hybridization , 2004 .

[12]  Preparation and application of L-cysteine-modified CdSe/CdS core/shell nanocrystals as a novel fluorescence probe for detection of nucleic acid. , 2008, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[13]  Zhiyuan Fan,et al.  Helical Metal Nanoparticle Assemblies with Defects: Plasmonic Chirality and Circular Dichroism , 2011 .

[14]  J. Donegan,et al.  Optimisation of the synthesis and modification of CdTe quantum dots for enhanced live cell imaging , 2006 .

[15]  Zhiyong Tang,et al.  Similar topological origin of chiral centers in organic and nanoscale inorganic structures: effect of stabilizer chirality on optical isomerism and growth of CdTe nanocrystals. , 2010, Journal of the American Chemical Society.

[16]  M. Crawford,et al.  Nanocrystal-based light-emitting diodes utilizing high-efficiency nonradiative energy transfer for color conversion. , 2006, Nano letters.

[17]  I. Yamashita,et al.  Circularly polarized luminescent CdS quantum dots prepared in a protein nanocage. , 2010, Angewandte Chemie.

[18]  H. Yao,et al.  Large optical activity of gold nanocluster enantiomers induced by a pair of optically active penicillamines. , 2005, Journal of the American Chemical Society.

[19]  F. Diederich,et al.  The Covalent Chemistry of Higher Fullerenes: C70 and Beyond , 1997 .

[20]  Harry A. Atwater,et al.  Optical pulse propagation in metal nanoparticle chain waveguides , 2003 .

[21]  Yuri Volkov,et al.  High-content screening as a universal tool for fingerprinting of cytotoxicity of nanoparticles. , 2008, ACS nano.

[22]  N. Kotov,et al.  Coupled Composite CdS−CdSe and Core−Shell Types of (CdS)CdSe and (CdSe)CdS Nanoparticles , 1996 .

[23]  R. Whetten,et al.  Giant Gold−Glutathione Cluster Compounds: Intense Optical Activity in Metal-Based Transitions , 2000 .

[24]  M. Bawendi,et al.  Compact cysteine-coated CdSe(ZnCdS) quantum dots for in vivo applications. , 2007, Journal of the American Chemical Society.

[25]  Vincent M Rotello,et al.  DNA‐binding by Functionalized Gold Nanoparticles: Mechanism and Structural Requirements , 2006, Chemical biology & drug design.

[26]  A. Govorov,et al.  Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: Role of multipole effects , 2008, 0801.3213.

[27]  Thomas Bürgi,et al.  Chiral gold nanoparticles. , 2009, Chemphyschem : a European journal of chemical physics and physical chemistry.

[28]  Jeong-Myeong Ha,et al.  Synthesis and characterization of accessible metal surfaces in calixarene-bound gold nanoparticles. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[29]  M. Valcárcel,et al.  Selective quantification of carnitine enantiomers using chiral cysteine-capped CdSe(ZnS) quantum dots. , 2009, Analytical chemistry.

[30]  A. Govorov Plasmon-Induced Circular Dichroism of a Chiral Molecule in the Vicinity of Metal Nanocrystals. Application to Various Geometries , 2011 .

[31]  Christine M. Micheel,et al.  Electrophoretic Isolation of Discrete Au Nanocrystal/DNA Conjugates , 2001 .

[32]  R. Demadrille,et al.  Carbodithioate-Containing Oligo- and Polythiophenes for Nanocrystals' Surface Functionalization , 2006 .

[33]  Stephan Link,et al.  The relaxation pathways of CdSe nanoparticles monitored with femtosecond time-resolution from the visible to the IR: Assignment of the transient features by carrier quenching , 2001 .

[34]  K. G. Thomas,et al.  Surface plasmon coupled circular dichroism of Au nanoparticles on peptide nanotubes. , 2010, Journal of the American Chemical Society.

[35]  Chad A. Mirkin,et al.  Oligonucleotide-Modified Gold Nanoparticles for Intracellular Gene Regulation , 2006, Science.

[36]  Hong Wang,et al.  L-Cysteine-coated CdSe/CdS core-shell quantum dots as selective fluorescence probe for copper(II) determination , 2008 .

[37]  W. Moffitt Optical Rotatory Dispersion of Helical Polymers , 1956 .

[38]  John M Kelly,et al.  Chiral highly luminescent CdS quantum dots. , 2007, Chemical communications.

[39]  Christopher Jones Circular dichroism: Principles and applications , 1995 .

[40]  Tsuyoshi Kawai,et al.  Optical activity and chiral memory of thiol-capped CdTe nanocrystals. , 2009, Journal of the American Chemical Society.

[41]  P. Prasad,et al.  Chiral poly(fluorene-alt-benzothiadiazole) (PFBT) and nanocomposites with gold nanoparticles: plasmonically and structurally enhanced chirality. , 2010, Journal of the American Chemical Society.

[42]  Rongyao Wang,et al.  Chiral assembly of gold nanorods with collective plasmonic circular dichroism response , 2011 .

[43]  Susan J. Quinn,et al.  Synthesis and spectroscopic studies of chiral CdSe quantum dots , 2010 .

[44]  Vladimir M. Shalaev,et al.  Large local optical activity in fractal aggregates of nanoparticles , 2001 .

[45]  Gil Markovich,et al.  Chirality of silver nanoparticles synthesized on DNA. , 2006, Journal of the American Chemical Society.

[46]  Thomas Bürgi,et al.  Chiral inversion of gold nanoparticles. , 2008, Journal of the American Chemical Society.

[47]  Nikolai Gaponik,et al.  THIOL-CAPPING OF CDTE NANOCRYSTALS: AN ALTERNATIVE TO ORGANOMETALLIC SYNTHETIC ROUTES , 2002 .

[48]  Mengsu Yang,et al.  DNA-directed self-assembly of gold nanoparticles into binary and ternary nanostructures , 2007 .

[49]  V. Kitaev Chiral nanoscale building blocksfrom understanding to applications , 2008 .

[50]  P. Bose,et al.  Template-directed nucleation and growth of CdS nanocrystal: the role of helical and nonhelical nanofibers on their shape and size , 2010 .

[51]  R. Naik,et al.  Plasmonic circular dichroism of Peptide-functionalized gold nanoparticles. , 2011, Nano letters.

[52]  J. Donegan,et al.  Synthesis, Characterisation, and Biological Studies of CdTe Quantum Dot–Naproxen Conjugates , 2007, ChemMedChem.

[53]  Ana G. Petrovic,et al.  Role of environmental factors on the structure and spectroscopic response of 5'-DNA-porphyrin conjugates caused by changes in the porphyrin-porphyrin interactions. , 2009, Chemistry.

[54]  Kevin E. Shopsowitz,et al.  Chiral nematic assemblies of silver nanoparticles in mesoporous silica thin films. , 2011, Journal of the American Chemical Society.

[55]  F. D. Abajo,et al.  Nonlocal Effects in the Plasmons of Strongly Interacting Nanoparticles, Dimers, and Waveguides , 2008, 0802.0040.

[56]  A. Govorov,et al.  Plasmon-induced CD response of oligonucleotide-conjugated metal nanoparticles. , 2011, Chemical communications.

[57]  O. Urakawa,et al.  Small - , 2007 .

[58]  Hannu Häkkinen,et al.  Divide and protect: capping gold nanoclusters with molecular gold-thiolate rings. , 2006, The journal of physical chemistry. B.

[59]  P. Guyot-Sionnest,et al.  Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals , 1996 .

[60]  Garnett W. Bryant,et al.  Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies , 2006 .

[61]  A Paul Alivisatos,et al.  Employing end-functional polythiophene to control the morphology of nanocrystal-polymer composites in hybrid solar cells. , 2004, Journal of the American Chemical Society.

[62]  Wei Chen,et al.  Nanoparticle superstructures made by polymerase chain reaction: collective interactions of nanoparticles and a new principle for chiral materials. , 2009, Nano letters.

[63]  Igor Nabiev,et al.  Fluorescent quantum dots as artificial antennas for enhanced light harvesting and energy transfer to photosynthetic reaction centers. , 2010, Angewandte Chemie.

[64]  Joseph M Kinsella,et al.  Circular dichroism study of the mechanism of formation of DNA templated nanowires. , 2008, Chemphyschem : a European journal of chemical physics and physical chemistry.

[65]  J. Donegan,et al.  CdTe nanoparticles display tropism to core histones and histone-rich cell organelles. , 2008, Small.

[66]  L. Liz‐Marzán,et al.  Fingers Crossed: Optical Activity of a Chiral Dimer of Plasmonic Nanorods. , 2011, The journal of physical chemistry letters.

[67]  E. Hendry,et al.  Ultrasensitive detection and characterization of biomolecules using superchiral fields. , 2010, Nature nanotechnology.

[68]  T. Emrick,et al.  Synthesis and characterization of CdSe nanorods functionalized with regioregular poly(3-hexylthiophene) , 2007 .

[69]  Bill Y. Lin,et al.  Facile synthesis of water-soluble and size-homogeneous cadmium selenide nanoparticles and their application as a long-wavelength fluorescent probe for detection of Hg(II) in aqueous solution. , 2008, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[70]  A. Govorov,et al.  Plasmonic circular dichroism of chiral metal nanoparticle assemblies. , 2010, Nano letters.

[71]  Nicholas A. Kotov,et al.  Theory of plasmon-enhanced Förster energy transfer in optically excited semiconductor and metal nanoparticles , 2007 .

[72]  E. Wang,et al.  One-pot synthesis of CdTe nanocrystals and shape control of luminescent CdTe-cystine nanocomposites. , 2006, Small.

[73]  Abraham Nitzan,et al.  Theory of energy transfer between molecules near solid state particles , 1985 .

[74]  Taihua Li,et al.  Circular dichroism study of chiral biomolecules conjugated with silver nanoparticles , 2004 .

[75]  J. A. Reyes-Nava,et al.  Chirality in bare and passivated gold nanoclusters , 2002, physics/0203078.

[76]  N. Gadegaard,et al.  Supramolecular assembly facilitating adsorbate-induced chiral electronic states in a metal surface. , 2007, The journal of physical chemistry. B.

[77]  Robert M Dickson,et al.  DNA-templated Ag nanocluster formation. , 2004, Journal of the American Chemical Society.

[78]  R. Advíncula,et al.  Conjugated Oligothiophene-Dendron-Capped CdSe Nanoparticles: Synthesis and Energy Transfer , 2004 .

[79]  G Ulrich Nienhaus,et al.  Zwitterionic biocompatible quantum dots for wide pH stability and weak nonspecific binding to cells. , 2009, ACS nano.

[80]  Thomas Bürgi,et al.  Chiral N-isobutyryl-cysteine protected gold nanoparticles: preparation, size selection, and optical activity in the UV-vis and infrared. , 2006, Journal of the American Chemical Society.

[81]  R. Naaman,et al.  The chiroptical signature of achiral metal clusters induced by dissymmetric adsorbates. , 2006, Physical chemistry chemical physics : PCCP.

[82]  Gabriel Shemer,et al.  Plasmon-resonance-enhanced absorption and circular dichroism. , 2008, Angewandte Chemie.

[83]  P. Nordlander,et al.  A Hybridization Model for the Plasmon Response of Complex Nanostructures , 2003, Science.

[84]  R. Naik,et al.  Synthesis of gold nanoparticles using multifunctional peptides. , 2005, Small.

[85]  Francisco Hidalgo,et al.  Role of Morphology in the Enhanced Optical Activity of Ligand-Protected Metal Nanoparticles , 2011 .

[86]  A. Paul Alivisatos,et al.  Pyramidal and chiral groupings of gold nanocrystals assembled using DNA scaffolds. , 2009, Journal of the American Chemical Society.

[87]  Rasmita Raval,et al.  From local adsorption stresses to chiral surfaces: (R,R)-tartaric acid on Ni(110). , 2002, Journal of the American Chemical Society.

[88]  T. Pradeep,et al.  Quantum Clusters in Cavities: Trapped Au15 in Cyclodextrins , 2011 .

[89]  Shachar Richter,et al.  Bio-inspired synthesis of chiral silver nanoparticles in mucin glycoprotein--the natural choice. , 2011, Chemical communications.

[90]  Chad A. Mirkin,et al.  DNA-Directed Synthesis of Binary Nanoparticle Network Materials , 1998 .

[91]  A. Roche,et al.  Organic Chemistry: , 1982, Nature.

[92]  Cuiping Han,et al.  Chiral recognition of amino acids based on cyclodextrin-capped quantum dots. , 2008, Small.

[93]  Z. Rosenzweig,et al.  Luminescent CdS quantum dots as selective ion probes. , 2002, Analytical chemistry.

[94]  Y. Gun’ko,et al.  Chiral shells and achiral cores in CdS quantum dots. , 2008, Nano letters.

[95]  Andreas Luch,et al.  Silicification of peptide-coated silver nanoparticles--A Biomimetic soft chemistry approach toward chiral hybrid core-shell materials. , 2011, ACS nano.