Vibration reduction and firing accuracy improvement by natural frequency optimization of a machine gun system

Structure vibration is known to influence the firing accuracy of a machine gun system. Studying the dynamic characteristics of the machine gun system and reducing its vibration response are crucial. Eigenfrequency optimization based on topology is an emerging vibration suppression technique that reduces structural vibration and stabilizes a machine gun system. This paper presents an effective and efficient method that accomplishes these tasks. The objective function is the frequency of the main vibration mode confirmed by modal and transient dynamic analyses. The frequency is maximized by subjecting topology optimization to mass constraints. Based on topology optimization results, the revised model addresses all structural and manufacturability concerns. Dynamic analysis, exterior ballistics calculation, and experimental test are conducted to verify the effectiveness of the proposed method. Results show that muzzle vibration and structure deformation are reduced and firing accuracy is remarkably improved.

[1]  Bin Xu,et al.  Topology group concept for truss topology optimization with frequency constraints , 2003 .

[2]  M. Wang,et al.  Level Set Based Structural Topology Optimization for Minimizing Frequency Response , 2011 .

[3]  Jiao Shi,et al.  Compliance optimization of a continuum with bimodulus material under multiple load cases , 2013, Comput. Aided Des..

[4]  Eric Kathe,et al.  Dynamically tuned shroud for gun barrel vibration attenuation , 2002, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[5]  E. Schnack,et al.  A new optimality criteria method for shape optimization of natural frequency problems , 2006 .

[6]  Jakob S. Jensen,et al.  On maximal eigenfrequency separation in two-material structures: the 1D and 2D scalar cases , 2006 .

[7]  Peretz P. Friedmann,et al.  Simultaneous Vibration and Noise Reduction in Rotorcraft Using Aeroelastic Simulation , 2004 .

[8]  Joon-Hyuk Park,et al.  Semi-active control to reduce carbody vibration of railway vehicle by using scaled roller rig , 2012 .

[9]  Y. Maeda,et al.  Structural topology optimization of vibrating structures with specified eigenfrequencies and eigenmode shapes , 2006 .

[10]  Grégoire Allaire,et al.  Eigenfrequency optimization in optimal design , 2001 .

[11]  Seog-Young Han,et al.  Application of artificial bee colony algorithm to topology optimization for dynamic stiffness problems , 2013, Comput. Math. Appl..

[12]  Ohung Kwon,et al.  Anti-sway trajectory generation of incompletely restrained wire-suspended system , 2013 .

[13]  Hak In Gimm,et al.  Characterizations of gun barrel vibrations of during firing based on shock response analysis and short-time Fourier transform , 2012 .

[14]  Chih-Chun Cheng,et al.  Structural design for desired eigenfrequencies and mode shapes using topology optimization , 2013 .

[15]  Niels Olhoff,et al.  Th World Congresses of Structural and Multidisciplinary Optimization Topology Optimization of Continuum Structures with Respect to Simple and Multiple Eigenfrequencies , 2022 .

[16]  Jianjun Wang,et al.  Static/dynamic contact FEA and experimental study for tooth profile modification of helical gears , 2012 .

[17]  G. Yoon Structural topology optimization for frequency response problem using model reduction schemes , 2010 .

[18]  Song Ji Dynamics Characteristics of Automatic Mechanism for Gas Operated and Floating Barrel Operated Automatic Action , 2014 .

[19]  E.C.N. Silva,et al.  Dynamic Design of Piezoelectric Laminated Sensors and Actuators using Topology Optimization , 2010 .

[20]  N. L. Pedersen Maximization of eigenvalues using topology optimization , 2000 .

[21]  N. Kikuchi,et al.  Solutions to shape and topology eigenvalue optimization problems using a homogenization method , 1992 .