G-band metamorphic HEMT-based frequency multipliers

Two monolithic G-band active frequency multipliers have been designed and fabricated using coplanar-waveguide technology. The monolithic microwave integrated circuits are a frequency tripler for an output frequency of 140 GHz and a 110-220-GHz frequency doubler. The tripler demonstrates a maximum conversion gain of -11 dB for an input power of 9 dBm, whereas the doubler achieves a conversion gain of -7 dB for a 2.5-dBm input signal. The circuits have been realized using two InAlAs/InGaAs-based metamorphic high electron-mobility transistor processes with different gate lengths of 100 and 50 nm, respectively.

[1]  A. Leuther,et al.  A 150 to 220 GHz balanced doubler MMIC using a 50 nm metamorphic HEMT technology , 2005, European Gallium Arsenide and Other Semiconductor Application Symposium, GAAS 2005.

[2]  I. Mehdi,et al.  A 540-640-GHz high-efficiency four-anode frequency tripler , 2005, IEEE Transactions on Microwave Theory and Techniques.

[3]  Stephen A. Maas,et al.  Nonlinear microwave circuits , 1988 .

[4]  V. Radisic,et al.  164-GHz MMIC HEMT doubler , 2001, IEEE Microwave and Wireless Components Letters.

[5]  H. Fudem,et al.  Novel millimeter wave active MMIC triplers , 1998, 1998 IEEE MTT-S International Microwave Symposium Digest (Cat. No.98CH36192).

[6]  G. Leuzzi,et al.  On the optimum design of microwave active frequency doublers , 1995, Proceedings of 1995 IEEE MTT-S International Microwave Symposium.

[7]  G.R. Branner,et al.  Design and optimization of large conversion gain active microwave frequency triplers , 2005, IEEE Microwave and Wireless Components Letters.

[8]  R. Weikle,et al.  A 5 mW and 5% efficiency 210 GHz InP-based heterostructure barrier varactor quintupler , 2004, IEEE Microwave and Wireless Components Letters.

[9]  G. Beaudin,et al.  Fabrication and performance of InP-based heterostructure barrier varactors in a 250-GHz waveguide tripler , 2000 .

[10]  N. Erickson,et al.  A planar varactor array multiplier chain to 300 GHz , 1999, 1999 IEEE MTT-S International Microwave Symposium Digest (Cat. No.99CH36282).

[11]  Arnulf Leuther,et al.  70 nm low-noise metamorphic HEMT technology on 4 inch GaAs wafers , 2003, International Conference onIndium Phosphide and Related Materials, 2003..

[12]  R. A. McTaggart,et al.  GaAs metamorphic HEMT (MHEMT): an attractive alternative to InP HEMTs for high performance low noise and power applications , 2000, Conference Proceedings. 2000 International Conference on Indium Phosphide and Related Materials (Cat. No.00CH37107).

[13]  Fadhel M. Ghannouchi,et al.  The effects of biasing and harmonic loading on mesfet tripler performance , 1995 .

[14]  A. Leuther,et al.  A D-band frequency doubler MMIC based on a 100-nm metamorphic HEMT technology , 2005, IEEE Microwave and Wireless Components Letters.

[15]  C. Rauscher High-Frequency Doubler Operation of GaAs Field-Effect Transistors , 1983 .

[16]  Youngwoo Kwon,et al.  180 GHz InAlAs/InGaAs HEMT monolithic integrated frequency doubler , 1991, [1991] GaAs IC Symposium Technical Digest.