Structure analysis and site‐directed mutagenesis of defined key residues and motives for pilus‐related sortase C1 in group B Streptococcus

In group B Streptococcus (GBS), 3 structurally distinct types of pili have been discovered as potential virulence factors and vaccine candidates. The pilus‐forming proteins are assembled into high‐molecular‐weight polymers via a transpeptidation mechanism mediated by specific class C sortases. Using a multidis‐ciplinary approach including bioinformatics, structural and biochemical studies, and in vivo mutagenesis, we performed a broad characterization of GBS sortase C1 of pilus island 2a. The high‐resolution X‐ray structure of the enzyme revealed that the active site, into the β‐barrel core of the enzyme, is made of the catalytic triad His157‐Cys219‐Arg228 and covered by a loop, known as the “lid.” We show that the catalytic triad and the predicted N‐ and C‐terminal transmembrane regions are required for the enzyme activity. Interestingly, by in vivo complementation mutagenesis studies, we found that the deletion of the entire lid loop or mutations in specific lid key residues had no effect on catalytic activity of the enzyme. In addition, kinetic characterizations of recombinant enzymes indicate that the lid mutants can still recognize and cleave the substrate‐mimicking peptide at least as well as the wild‐type protein.—Cozzi, R., Malito, E., Nuccitelli, A., D'Onofrio, M., Martinelli, M., Ferlenghi, I., Grandi, G., Telford, J. L., Maione, D., Rinaudo, C. D. Structure analysis and site‐directed mutagenesis of defined key residues and motives for pilus‐related sortase C1 in group B Streptococcus. FASEB J. 25, 1874‐1886 (2011). www.fasebj.org

[1]  R. Clubb,et al.  The Sortase A Enzyme That Attaches Proteins to the Cell Wall of Bacillus anthracis Contains an Unusual Active Site Architecture* , 2010, The Journal of Biological Chemistry.

[2]  G. Grandi,et al.  Specific Involvement of Pilus Type 2a in Biofilm Formation in Group B Streptococcus , 2010, PloS one.

[3]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[4]  A. D. Di Guilmi,et al.  Sortase activity is controlled by a flexible lid in the pilus biogenesis mechanism of gram-positive pathogens. , 2009, Biochemistry.

[5]  S. Normark,et al.  Two crystal structures of pneumococcal pilus sortase C provide novel insights into catalysis and substrate specificity. , 2009, Journal of molecular biology.

[6]  R. Offringa,et al.  Design of agonistic altered peptides for the robust induction of CTL directed towards H-2Db in complex with the melanoma-associated epitope gp100. , 2009, Cancer research.

[7]  Asis Das,et al.  Acyl Enzyme Intermediates in Sortase-Catalyzed Pilus Morphogenesis in Gram-Positive Bacteria , 2009, Journal of bacteriology.

[8]  Scott A Lesley,et al.  The Polymerase Incomplete Primer Extension (PIPE) method applied to high-throughput cloning and site-directed mutagenesis. , 2009, Methods in molecular biology.

[9]  I. Margarit,et al.  Preventing bacterial infections with pilus-based vaccines: the group B streptococcus paradigm. , 2009, The Journal of infectious diseases.

[10]  Guy Schoehn,et al.  Sortase-mediated pilus fiber biogenesis in Streptococcus pneumoniae. , 2008, Structure.

[11]  B. Kreikemeyer,et al.  Mode of Expression and Functional Characterization of FCT-3 Pilus Region-Encoded Proteins in Streptococcus pyogenes Serotype M49 , 2008, Infection and Immunity.

[12]  Liisa Holm,et al.  Searching protein structure databases with DaliLite v.3 , 2008, Bioinform..

[13]  G. Grandi,et al.  Sortase A Utilizes an Ancillary Protein Anchor for Efficient Cell Wall Anchoring of Pili in Streptococcus agalactiae , 2008, Infection and Immunity.

[14]  Anjali Mandlik,et al.  Pili in Gram-positive bacteria: assembly, involvement in colonization and biofilm development. , 2008, Trends in microbiology.

[15]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[16]  R. Rappuoli,et al.  Group B Streptococcus: global incidence and vaccine development , 2006, Nature Reviews Microbiology.

[17]  I. Margarit,et al.  Use of Lactococcus lactis expressing pili from group B Streptococcus as a broad-coverage vaccine against streptococcal disease. , 2006, The Journal of infectious diseases.

[18]  I. Margarit,et al.  Identification of novel genomic islands coding for antigenic pilus‐like structures in Streptococcus agalactiae , 2006, Molecular microbiology.

[19]  Rino Rappuoli,et al.  Pili in Gram-positive pathogens , 2006, Nature Reviews Microbiology.

[20]  L. Marraffini,et al.  Sortases and the Art of Anchoring Proteins to the Envelopes of Gram-Positive Bacteria , 2006, Microbiology and Molecular Biology Reviews.

[21]  M. T. Naik,et al.  Staphylococcus aureus Sortase A Transpeptidase , 2006, Journal of Biological Chemistry.

[22]  R. Rappuoli,et al.  Genome Analysis Reveals Pili in Group B Streptococcus , 2005, Science.

[23]  H. Tettelin,et al.  Identification of a Universal Group B Streptococcus Vaccine by Multiple Genome Screen , 2005, Science.

[24]  Itay Mayrose,et al.  ConSurf 2005: the projection of evolutionary conservation scores of residues on protein structures , 2005, Nucleic Acids Res..

[25]  P. Glaser,et al.  The SrtA Sortase of Streptococcus agalactiae Is Required for Cell Wall Anchoring of Proteins Containing the LPXTG Motif, for Adhesion to Epithelial Cells, and for Colonization of the Mouse Intestine , 2005, Infection and Immunity.

[26]  S. Dramsi,et al.  Sorting sortases: a nomenclature proposal for the various sortases of Gram-positive bacteria. , 2005, Research in microbiology.

[27]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[28]  L. Marraffini,et al.  Protein sorting to the cell wall envelope of Gram-positive bacteria. , 2004, Biochimica et biophysica acta.

[29]  S. Narayana,et al.  Crystal Structures of Staphylococcus aureus Sortase A and Its Substrate Complex* , 2004, Journal of Biological Chemistry.

[30]  L. Marraffini,et al.  Sortases and pilin elements involved in pilus assembly of Corynebacterium diphtheriae , 2004, Molecular microbiology.

[31]  S. Narayana,et al.  The structure of sortase B, a cysteine transpeptidase that tethers surface protein to the Staphylococcus aureus cell wall. , 2004, Structure.

[32]  A. Aulabaugh,et al.  Kinetic mechanism of Staphylococcus aureus sortase SrtA. , 2003, Biochemistry.

[33]  Z. Otwinowski,et al.  research papers Acta Crystallographica Section A Foundations of , 2003 .

[34]  W. Delano The PyMOL Molecular Graphics System , 2002 .

[35]  R. Clubb,et al.  Structure of sortase, the transpeptidase that anchors proteins to the cell wall of Staphylococcus aureus , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[36]  J. Sühnel,et al.  C-h⋯π-interactions in proteins , 2001 .

[37]  M. Pallen,et al.  An embarrassment of sortases - a richness of substrates? , 2001, Trends in microbiology.

[38]  J. Sühnel,et al.  C-H...pi-interactions in proteins. , 2001, Journal of molecular biology.

[39]  S. Mazmanian,et al.  Anchoring of Surface Proteins to the Cell Wall of Staphylococcus aureus , 2000, The Journal of Biological Chemistry.

[40]  L. Madoff,et al.  Subcellular fractionation of group B Streptococcus. , 1999, BioTechniques.

[41]  L. Lally The CCP 4 Suite — Computer programs for protein crystallography , 1998 .

[42]  L Serrano,et al.  Side-chain interactions between sulfur-containing amino acids and phenylalanine in alpha-helices. , 1995, Biochemistry.

[43]  D S Moss,et al.  Main-chain bond lengths and bond angles in protein structures. , 1993, Journal of molecular biology.

[44]  R. Wirth,et al.  Highly efficient protoplast transformation system for Streptococcus faecalis and a new Escherichia coli-S. faecalis shuttle vector , 1986, Journal of bacteriology.

[45]  Hilla Peretz,et al.  Ju n 20 03 Schrödinger ’ s Cat : The rules of engagement , 2003 .