2-D unitary matrix pencil method for efficient direction of arrival estimation

In this study, we extended the one-dimensional (1-D) unitary matrix pencil method (UMP) [N. Yilmazer, J. Koh, T.K. Sarkar, Utilization of a unitary transform for efficient computation in the matrix pencil method to find the direction of arrival, IEEE Trans. Antennas Propagat. 54 (1) (2006) 175-181] to two-dimensional case, where 2-D matrix pencil (MP) method are used to find the 2-D poles corresponding to the direction of arrival (DOA), azimuth and elevation angles, of the far field sources impinging on antenna arrays. This technique uses MP method to compute the DOA of the signals using a very efficient computational procedure in which the complexity of the computation can be reduced significantly by using a unitary matrix transformation. This method applies the technique directly to the data without forming a covariance matrix. Using real computations through the unitary transformation for the 2-D matrix pencil method leads to a very efficient computational methodology for real time implementation on a DSP chip. The numerical simulation results are provided to see the performance of the method.

[1]  Nobuyoshi Kikuma,et al.  An adaptive array utilizing an adaptive spatial averaging technique for multipath environments , 1987 .

[2]  Stephen A. Dyer,et al.  Digital signal processing , 2018, 8th International Multitopic Conference, 2004. Proceedings of INMIC 2004..

[3]  Salvatore D. Morgera,et al.  Some results on matrix symmetries and a pattern recognition application , 1986, IEEE Trans. Acoust. Speech Signal Process..

[4]  K. J. Liu,et al.  A high-resolution technique for multidimensional NMR spectroscopy , 1998, IEEE Transactions on Biomedical Engineering.

[5]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[6]  J. Capon Maximum-likelihood spectral estimation , 1979 .

[7]  Josef A. Nossek,et al.  Simultaneous Schur decomposition of several matrices to achieve automatic pairing in multidimensional harmonic retrieval problems , 1996, 1996 8th European Signal Processing Conference (EUSIPCO 1996).

[8]  Anna Lee,et al.  Centrohermitian and skew-centrohermitian matrices , 1980 .

[9]  Arthur Jay Barabell,et al.  Improving the resolution performance of eigenstructure-based direction-finding algorithms , 1983, ICASSP.

[10]  Y. Hua,et al.  Generalized pencil-of-function method for extracting poles of an EM system from its transient response , 1989 .

[11]  Chien-Chung Yeh,et al.  A unitary transformation method for angle-of-arrival estimation , 1991, IEEE Trans. Signal Process..

[12]  Josef A. Nossek,et al.  Simultaneous Schur decomposition of several nonsymmetric matrices to achieve automatic pairing in multidimensional harmonic retrieval problems , 1998, IEEE Trans. Signal Process..

[13]  T. Sarkar,et al.  Using the matrix pencil method to estimate the parameters of a sum of complex exponentials , 1995 .

[14]  Thomas Kailath,et al.  Detection of number of sources via exploitation of centro-symmetry property , 1994, IEEE Trans. Signal Process..

[15]  Josef A. Nossek,et al.  Smart antennas , 2001, Eur. Trans. Telecommun..

[16]  Jinhwan Koh,et al.  Utilization of a unitary transform for efficient computation in the matrix pencil method to find the direction of arrival , 2006, IEEE Transactions on Antennas and Propagation.

[17]  Ed F. Deprettere,et al.  Azimuth and elevation computation in high resolution DOA estimation , 1992, IEEE Trans. Signal Process..

[18]  Josef A. Nossek,et al.  Unitary ESPRIT: how to obtain increased estimation accuracy with a reduced computational burden , 1995, IEEE Trans. Signal Process..

[19]  R. Bachl The forward-backward averaging technique applied to TLS-ESPRIT processing , 1995, IEEE Trans. Signal Process..

[20]  Yingbo Hua Estimating two-dimensional frequencies by matrix enhancement and matrix pencil , 1992, IEEE Trans. Signal Process..

[21]  Tapan K. Sarkar,et al.  Smart Antennas , 2003 .

[22]  Guanghan Xu,et al.  Detection of number of sources via exploitation of centro-symmetry property , 1992, [Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing.