Intrinsic optical fiber temperature sensor operating by modulation of the local numerical aperture

Curvature of a multimode optical fiber reduces the numerical aperture and induces radiation losses. We study this phenomenon and we present the "model disadaptation" method to calculate the local numerical aperture and the power attenuation. We exploit the bending effect on the local numerical aperture to propose a new intrinsic optical fiber temperature sensor. The modeling results are experimentally validated for two kinds of optical fibers: a silica-silicone optical fiber and a silica-polymer optical fiber. The simulation and the experimental results are in good accordance and show that the silica-silicone optical fiber sensor can operate between −60 and 152°C with a good response. The silica-polymer optical fiber temperature sensor can sense the temperatures between −249 and 83°C with a good response.

[1]  Gustave C. Fralick,et al.  Use of a multiwavelength pyrometer in several elevated temperature aerospace applications , 2001 .

[2]  A. Vengsarkar,et al.  Optical fiber long-period grating sensors. , 1996, Optics letters.

[3]  B A Soltz,et al.  Two-color mid-infrared thermometer with a hollow glass optical fiber. , 1997, Applied optics.

[4]  Henry F. Taylor,et al.  Fiber-optic Fabry-Perot temperature sensor using a low-coherence light source , 1991 .

[5]  S. James,et al.  Optical fibre long-period grating sensors: characteristics and application , 2003 .

[6]  Ralph P. Tatam,et al.  Thermal dependence of the strain response of optical fibre Bragg gratings , 2004 .

[7]  D. Marcuse,et al.  Influence of curvature on the losses of doubly clad fibers. , 1982, Applied optics.

[8]  Max B. Reid,et al.  Temperature dependence of fiber optic Bragg gratings at low temperatures , 1998 .

[9]  Ralph P. Tatam,et al.  Cryogenic temperature response of fibre optic long period gratings , 2003 .

[10]  A. J. Bur,et al.  Fluorescence Temperature Measurements: Methodology for Applications to Process Monitoring , 2004 .

[11]  Boming Zhang,et al.  Strain dependence of fiber Bragg grating sensors at low temperature , 2006 .

[12]  X. Bao,et al.  22-km distributed temperature sensor using Brillouin gain in an optical fiber. , 1993, Optics letters.

[13]  S. James,et al.  Strain response of fibre Bragg grating sensors at cryogenic temperatures , 2002, 2002 15th Optical Fiber Sensors Conference Technical Digest. OFS 2002(Cat. No.02EX533).

[14]  L. Crovini,et al.  Digital optical fiber point sensor for high-temperature measurement , 1995 .

[15]  H Berthou,et al.  Optical-fiber temperature sensor based on upconversion-excited fluorescence. , 1990, Optics letters.

[16]  S. Khaliq,et al.  Enhanced sensitivity fibre optic long period grating temperature sensor , 2002, 2002 15th Optical Fiber Sensors Conference Technical Digest. OFS 2002(Cat. No.02EX533).

[17]  D. Marcuse,et al.  Bending losses of the asymmetric slab waveguide , 1971 .

[18]  A. Snyder,et al.  Bending losses of multimode optical fibres , 1974 .

[19]  B. McKinley,et al.  Incorporation of fiber-optic sensors in concrete specimens: testing and evaluation , 2004, IEEE Sensors Journal.

[20]  M. N. Alahbabi,et al.  Enhanced performance of long range Brillouin intensity based temperature sensors using remote Raman amplification , 2004 .

[21]  H. Taylor,et al.  Optical-fiber Fabry-Perot embedded sensor. , 1989, Optics letters.

[22]  Taehyung Kim,et al.  Sensors and sensor arrays based on conjugated polymers and carbon nanotubes , 2002 .

[23]  Kazuo Hotate,et al.  Optical fiber sensors , 1989 .

[24]  E. Marcatili Bends in optical dielectric guides , 1969 .

[25]  A. S. Holmes,et al.  Intelligent sensor for metal ions based on fluorescence resonance energy transfer , 1995 .

[26]  Paul R. Stoddart,et al.  Fibre optic distributed temperature sensor with an integrated background correction function , 2005 .

[27]  D. Gloge,et al.  Bending loss in multimode fibers with graded and ungraded core index. , 1972, Applied optics.

[28]  Kenneth T. V. Grattan,et al.  Bragg grating performance in Er-Sn-doped germanosilicate fiber for simultaneous measurement of wide range temperature (to 500 C) and strain , 2003 .

[29]  Ralph P. Tatam,et al.  Fibre Bragg gratings fabricated using a wavelength tuneable laser source and a phase mask based interferometer , 1996 .

[30]  T. Newson,et al.  100 km distributed temperature sensor based on coherent detection of spontaneous Brillouin backscatter , 2004 .

[31]  Malcolm H. Dunn,et al.  Thermal dependence of the principal refractive indices of lithium triborate , 1995 .

[32]  H F Taylor,et al.  Performance of a fiber-optic temperature sensor from -200 to 1050 degrees C. , 1988, Optics letters.

[33]  Gregory L. Baker,et al.  Fiber optic oxygen sensor for power plant applications , 2003, Proceedings of IEEE Sensors 2003 (IEEE Cat. No.03CH37498).

[34]  Kyriacos Kalli,et al.  Fibre Bragg Gratings , 2006 .

[35]  Raman Kashyap Chapter 7 – Chirped Fiber Bragg Gratings , 1999 .

[36]  C. B. Thomas,et al.  A thin film coating for phosphor thermography , 1998 .

[37]  Colin Fitzpatrick,et al.  Vibration-insensitive temperature sensing system based on fluorescence decay and using a digital processing approach , 2006 .

[38]  Millimeter-Wave Monitoring of Nuclear Waste Glass Melts - An Overview , 2002 .

[39]  S. Yin,et al.  A highly sensitive long period grating based tunable filter using a unique double-cladding layer structure , 2001 .

[40]  G. Stewart Optical Waveguide Theory , 1983, Handbook of Laser Technology and Applications.

[41]  T P Newson,et al.  Brillouin-based fiber-optic distributed temperature sensor with optical preamplification. , 2000, Optics letters.

[42]  J. A. Smith,et al.  A lower limit of 9.5 Gyr on the age of the Galactic disk from the oldest white dwarf stars , 1996, Nature.

[43]  Stephen W James,et al.  Optical fiber long-period gratings with Langmuir-Blodgett thin-film overlays. , 2002, Optics letters.