A new approach to fluid–structure interaction within graphics hardware accelerated smooth particle hydrodynamics considering heterogeneous particle size distribution

A corrective smooth particle method (CSPM) within smooth particle hydrodynamics (SPH) is used to study the deformation of an aircraft structure under high-velocity water-ditching impact load. The CSPM-SPH method features a new approach for the prediction of two-way fluid–structure interaction coupling. Results indicate that the implementation is well suited for modeling the deformation of structures under high-velocity impact into water as evident from the predicted stress and strain localizations in the aircraft structure as well as the integrity of the impacted interfaces, which show no artificial particle penetrations. To reduce the simulation time, a heterogeneous particle size distribution over a complex three-dimensional geometry is used. The variable particle size is achieved from a finite element mesh with variable element size and, as a result, variable nodal (i.e., SPH particle) spacing. To further accelerate the simulations, the SPH code is ported to a graphics processing unit using the OpenACC standard. The implementation and simulation results are described and discussed in this paper.

[1]  Alan Gray,et al.  Porting and scaling OpenACC applications on massively-parallel, GPU-accelerated supercomputers , 2012 .

[2]  J. Morris,et al.  Modeling Low Reynolds Number Incompressible Flows Using SPH , 1997 .

[3]  Zhiyi Zhang,et al.  Dynamic behavior and sound transmission analysis of a fluid–structure coupled system using the direct-BEM/FEM , 2007 .

[4]  Alexander Panchenko,et al.  Pairwise Force Smoothed Particle Hydrodynamics model for multiphase flow: Surface tension and contact line dynamics , 2016, J. Comput. Phys..

[5]  Paul W. Cleary,et al.  A mesh-free approach for fracture modelling of gravity dams under earthquake , 2012, International Journal of Fracture.

[6]  Peter Wriggers,et al.  Numerical simulation of fluid‐structure interaction problems by a coupled SPH‐FEM approach , 2016 .

[7]  D. Deb,et al.  Failure Process of Brittle Rock Using Smoothed Particle Hydrodynamics , 2013 .

[8]  Martin Siemann,et al.  Fluid-structure interaction by the mixed SPH-FE method with application to aircraft ditching , 2015 .

[9]  O. von Estorff,et al.  Efficient non‐linear solid–fluid interaction analysis by an iterative BEM/FEM coupling , 2005 .

[10]  J. Monaghan,et al.  SPH simulation of multi-phase flow , 1995 .

[11]  R. P. Ingel,et al.  An approach for tension instability in smoothed particle hydrodynamics (SPH) , 1995 .

[12]  Ivica Smojver,et al.  Bird strike damage analysis in aircraft structures using Abaqus/Explicit and coupled Eulerian Lagrangian approach , 2011 .

[13]  Rui Gao,et al.  Numerical modelling of regular wave slamming on subface of open-piled structures with the corrected SPH method , 2012 .

[14]  Hyun Moo Koh,et al.  Fluid–structure interaction analysis of 3‐D rectangular tanks by a variationally coupled BEM–FEM and comparison with test results , 1998 .

[15]  A. Tybulewicz,et al.  Equations of State for Solids at High Pressures and Temperatures , 2014 .

[16]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[17]  Mingming Tong,et al.  An incompressible multi-phase smoothed particle hydrodynamics (SPH) method for modelling thermocapillary flow , 2014 .

[18]  Hua Liu,et al.  Two-phase SPH simulation of fluid–structure interactions , 2016 .

[19]  O. von Estorff,et al.  Fluid-structure interaction by coupling BEM and nonlinear FEM , 2002 .

[20]  Sebastian Heimbs,et al.  Review: Computational methods for bird strike simulations: A review , 2011 .

[21]  Xin Liu,et al.  2D Numerical ISPH Wave Tank for Complex Fluid–Structure Coupling Problems , 2016 .

[22]  J. Monaghan,et al.  Shock simulation by the particle method SPH , 1983 .

[23]  Guirong Liu,et al.  A coupled ES-FEM/BEM method for fluid–structure interaction problems , 2011 .

[24]  Furen Ming,et al.  Numerical investigation of rising bubbles bursting at a free surface through a multiphase SPH model , 2017 .

[25]  Ivica Smojver,et al.  Numerical simulation of bird strike damage prediction in airplane flap structure , 2010 .

[26]  Stephen A. Jarvis,et al.  Accelerating Hydrocodes with OpenACC, OpenCL and CUDA , 2012, 2012 SC Companion: High Performance Computing, Networking Storage and Analysis.

[27]  Lixu Gu,et al.  A Point-Based Simulation Framework for Minimally Invasive Surgery , 2010, ISMBS.

[28]  M. Mahzoon,et al.  Predicting fracture and fragmentation in ceramic using a thermo-mechanical basis , 2011 .

[29]  Zhen Chen,et al.  An SPH model for multiphase flows with complex interfaces and large density differences , 2015, J. Comput. Phys..

[30]  P. W. Randles,et al.  Normalized SPH with stress points , 2000 .

[31]  I. Kimura,et al.  Simulation of three-dimensional rapid free-surface granular flow past different types of obstructions using the SPH method , 2016, Journal of Glaciology.

[32]  Yan Bao,et al.  Combined interface boundary condition method for fluid–rigid body interaction , 2012 .

[33]  I. Beyerlein,et al.  Transitioning rate sensitivities across multiple length scales: Microstructure-property relationships in the Taylor cylinder impact test on zirconium , 2016 .

[34]  Ted Belytschko,et al.  Immersed particle method for fluid–structure interaction , 2009 .

[35]  K. Thoma,et al.  Computational simulation of the hypervelocity impact of al-spheres on thin plates of different materials , 1997 .

[36]  Tao Zhang,et al.  Time Domain Simulation of Sound Waves Using Smoothed Particle Hydrodynamics Algorithm with Artificial Viscosity , 2015, Algorithms.

[37]  Rob Farber,et al.  Parallel Programming with OpenACC , 2016 .

[38]  Amy Henderson Squilacote The Paraview Guide , 2008 .

[39]  Antonio J. Gil,et al.  On continuum immersed strategies for Fluid-Structure Interaction , 2012 .

[40]  Wil H. A. Schilders,et al.  An Improved CSPM Approach for Accurate Second-Derivative Approximations with SPH , 2017 .

[41]  Chong Peng,et al.  Multiphase SPH modeling of free surface flow in porous media with variable porosity , 2017 .

[42]  G. R. Johnson,et al.  Incorporation of an SPH option into the EPIC code for a wide range of high velocity impact computations , 1993 .

[43]  J. Monaghan Smoothed Particle Hydrodynamics and Its Diverse Applications , 2012 .

[44]  Shu-ichiro Inutsuka,et al.  Shear Flows in Smoothed Particle Hydrodynamics , 2002 .

[45]  Ricardo A. Lebensohn,et al.  Modeling mechanical response and texture evolution of α-uranium as a function of strain rate and temperature using polycrystal plasticity , 2013 .

[46]  A. Hartmaier,et al.  A crystal plasticity smooth-particle hydrodynamics approach and its application to equal-channel angular pressing simulation , 2016 .

[47]  W. Benz,et al.  Explicit 3D continuum fracture modeling with smooth particle hydrodynamics , 1993 .

[48]  K. Liao,et al.  Corrected First-Order Derivative ISPH in Water Wave Simulations , 2017 .

[49]  Guirong Liu,et al.  Smoothed Particle Hydrodynamics: A Meshfree Particle Method , 2003 .

[50]  Andrew J. Gunnion,et al.  Bird-strike simulation for certification of the Boeing 787 composite moveable trailing edge , 2008 .

[51]  Arnaud G. Malan,et al.  An accelerated, fully-coupled, parallel 3D hybrid finite-volume fluid-structure interaction scheme , 2013 .

[52]  Anirban Dhar,et al.  Coupled incompressible Smoothed Particle Hydrodynamics model for continuum-based modelling sediment transport , 2017 .

[53]  Alexandre M. Tartakovsky,et al.  A new smoothed particle hydrodynamics non-Newtonian model for friction stir welding: Process modeling and simulation of microstructure evolution in a magnesium alloy , 2013 .

[54]  Vincent Faucher,et al.  Dynamic simulation of damage‐fracture transition in smoothed particles hydrodynamics shells , 2012 .

[55]  Adnan Eghtesad,et al.  Study of dynamic behavior of ceramic–metal FGM under high velocity impact conditions using CSPM method , 2012 .

[56]  Tomonari Furukawa,et al.  Multidimensional discontinuous SPH method and its application to metal penetration analysis , 2013 .

[57]  Krish Thiagarajan,et al.  An SPH projection method for simulating fluid-hypoelastic structure interaction , 2009 .

[58]  J. Monaghan SPH without a Tensile Instability , 2000 .

[59]  Vishal Mehra,et al.  Tensile Instability and Artificial Stresses in Impact Problems in SPH , 2012 .

[60]  J. Monaghan Simulating Free Surface Flows with SPH , 1994 .

[61]  Lee Davison,et al.  Fundamentals of Shock Wave Propagation in Solids , 2008 .

[62]  L. Lucy A numerical approach to the testing of the fission hypothesis. , 1977 .

[63]  Afonso Paiva,et al.  Particle-based viscoplastic fluid/solid simulation , 2009, Comput. Aided Des..

[64]  Qiang Xu,et al.  SPH model for fluid–structure interaction and its application to debris flow impact estimation , 2017, Landslides.

[65]  A. Iske,et al.  A Meshfree Semi-implicit Smoothed Particle Hydrodynamics Method for Free Surface Flow , 2017 .

[66]  Christian Terboven,et al.  OpenACC - First Experiences with Real-World Applications , 2012, Euro-Par.

[67]  Leigh McCue,et al.  Free-surface flow interactions with deformable structures using an SPH–FEM model , 2012 .

[68]  S. Kalidindi,et al.  Crystal Plasticity Modeling of Microstructure Evolution and Mechanical Fields During Processing of Metals Using Spectral Databases , 2017 .

[69]  I. Beyerlein,et al.  Anisotropic modeling of structural components using embedded crystal plasticity constructive laws within finite elements , 2016 .

[70]  Y. Amini,et al.  A new model to solve fluid–hypo-elastic solid interaction using the smoothed particle hydrodynamics (SPH) method , 2011 .

[71]  J. K. Chen,et al.  An improvement for tensile instability in smoothed particle hydrodynamics , 1999 .

[72]  J. K. Chen,et al.  A corrective smoothed particle method for boundary value problems in heat conduction , 1999 .

[73]  D. Fullwood,et al.  Computationally efficient database and spectral interpolation for fully plastic Taylor-type crystal plasticity calculations of face-centered cubic polycrystals , 2008 .

[74]  S. P. Gill,et al.  Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena , 2002 .

[75]  Xu Li,et al.  Artificial viscosity in smoothed particle hydrodynamics simulation of sound interference , 2014 .

[76]  Tetsuro Goda,et al.  Numerical Study on Seepage-induced Failure of Caisson Type Breakwaters Using a Stabilized ISPH , 2017 .

[77]  D. Agard,et al.  Microtubule nucleation by γ-tubulin complexes , 2011, Nature Reviews Molecular Cell Biology.

[78]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[79]  Mjh Martijn Anthonissen,et al.  An improved CSPM approximation for multi-dimensional second-order derivatives , 2015 .

[80]  J. Monaghan On the problem of penetration in particle methods , 1989 .

[81]  T. Nishita,et al.  A Velocity Correcting Method for Volume Preserving Viscoelastic Fluids , 2014 .

[82]  P. Armitage,et al.  Convergence of simulations of self-gravitating accretion discs II: Sensitivity to the implementation of radiative cooling and artificial viscosity , 2013, 1311.7355.

[83]  D. Violeau,et al.  Smoothed particle hydrodynamics (SPH) for free-surface flows: past, present and future , 2016 .

[84]  Stephen M. Longshaw,et al.  DualSPHysics: Open-source parallel CFD solver based on Smoothed Particle Hydrodynamics (SPH) , 2015, Comput. Phys. Commun..

[85]  W. Benz,et al.  Simulations of brittle solids using smooth particle hydrodynamics , 1995 .