Probabilistic analysis for combinatorial functions of moving points

We initiate a probabilistic study of configuration functions of moving points. In our probabilistic model, a particle is given an initiaf position and a velocity drawn independently at random from the same distribution D. We show that if n particles are drawn independently at random from the uniform distribution on the square, their convex hull undergoes El(logz n) combinatorial changes in expectation, their Voronoi diagram undergoes e(n312 ) combinatorial changes, and their closest pair undergoes El(n) combinatorial changes.

[1]  Takeshi Tokuyama,et al.  On minimum and maximum spanning trees of linearly moving points , 1995, Discret. Comput. Geom..

[2]  H. Raynaud Sur L'enveloppe convexe des nuages de points aleatoires dans Rn . I , 1970 .

[3]  Rex A. Dwyer Higher-dimensional voronoi diagrams in linear expected time , 1989, SCG '89.

[4]  Raimund Seidel,et al.  Constructing higher-dimensional convex hulls at logarithmic cost per face , 1986, STOC '86.

[5]  Rex A. Dwyer Convex hulls of samples from spherically symmetric distributions , 1991, Discret. Appl. Math..

[6]  Fernando Affentranger,et al.  On the convex hull of uniform random points in a simpled-polytope , 1991, Discret. Comput. Geom..

[7]  Rex A. Dwyer Kinder, gentler average-case analysis for convex hulls and maximal vectors , 1990, SIGA.

[8]  Richard C. T. Lee,et al.  Voronoi Diagrams of Moving Points in the Plane , 1990, FSTTCS.

[9]  Rex A. Dwyer,et al.  On the convex hull of random points in a polytope , 1988, Journal of Applied Probability.

[10]  Leonidas J. Guibas,et al.  Fast collision detection among multiple moving spheres , 1997, SCG '97.

[11]  Robert L. Scot Drysdale,et al.  Voronoi diagrams based on convex distance functions , 1985, SCG '85.

[12]  Leonidas J. Guibas,et al.  A practical evaluation of kinetic data structures , 1997, SCG '97.

[13]  Thomas Roos,et al.  Voronoi Diagrams of Moving Points in Higher Dimensional Spaces , 1992, SWAT.

[14]  Olivier Devillers,et al.  Dog Bites Postman: Point Location in the Moving Voronoi Diagram and Related Problems , 1993, Int. J. Comput. Geom. Appl..

[15]  Leonidas J. Guibas,et al.  Maintaining the Extent of a Moving Point Set , 1997, WADS.

[16]  Kenneth L. Clarkson,et al.  Fast linear expected-time algorithms for computing maxima and convex hulls , 1993, SODA '90.

[17]  J. SOME DYNAMIC COMPUTATIONAL GEOMETRY PROBLEMS , 2009 .

[18]  B. Efron The convex hull of a random set of points , 1965 .

[19]  Takeshi Tokuyama,et al.  On minimum and maximum spanning trees of linearly moving points , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[20]  T. Ottmann,et al.  Dynamical sets of points , 1984 .

[21]  M. Atallah Some dynamic computational geometry problems , 1985 .

[22]  Leonidas J. Guibas,et al.  Data structures for mobile data , 1997, SODA '97.

[23]  Rex A. Dwyer Higher-dimensional voronoi diagrams in linear expected time , 1991, Discret. Comput. Geom..