An efficient iterative algorithm for the approximation of the fast and slow dynamics of stiff systems

The relation between the iterative algorithms based on the computational singular perturbation (CSP) and the invariance equation (IE) methods is examined. The success of the two methods is based on the appearance of fast and slow time scales in the dynamics of stiff systems. Both methods can identify the low-dimensional surface in the phase space (slow invariant manifold, SIM), where the state vector is attracted under the action of fast dynamics. It is shown that this equivalence of the two methods can be expressed by simple algebraic relations. CSP can also construct the simplified non-stiff system that models the slow dynamics of the state vector on the SIM. An extended version of IE is presented which can also perform this task. This new IE version is shown to be exactly similar to a modified version of CSP, which results in a very efficient algorithm, especially in cases where the SIM dimension is small, so that significant model simplifications are possible.

[1]  Neil Fenichel Geometric singular perturbation theory for ordinary differential equations , 1979 .

[2]  Simon J Fraser,et al.  Slow manifold for a bimolecular association mechanism. , 2004, The Journal of chemical physics.

[3]  U. Maas,et al.  ILDMs of higher hydrocarbons and the hierarchy of chemical kinetics , 2000 .

[4]  C. Law,et al.  Complex CSP for chemistry reduction and analysis , 2001 .

[5]  Michael J. Davis,et al.  Geometric Approach to Multiple-Time-Scale Kinetics: A Nonlinear Master Equation Describing Vibration-to-Vibration Relaxation , 2001 .

[6]  Epaminondas Mastorakos,et al.  An algorithm for the construction of global reduced mechanisms with CSP data , 1999 .

[7]  Hans G. Kaper,et al.  Analysis of the Computational Singular Perturbation Reduction Method for Chemical Kinetics , 2004, J. Nonlinear Sci..

[8]  Stephen J. Klippenstein,et al.  Geometric Investigation of Association/Dissociation Kinetics with an Application to the Master Equation for CH3 + CH3 ↔ C2H6 , 2002 .

[9]  Marc R. Roussel,et al.  Geometry of the steady-state approximation: Perturbation and accelerated convergence methods , 1990 .

[10]  Mauro Valorani,et al.  Explicit time-scale splitting algorithm for stiff problems: auto-ignition of gaseous mixtures behind a steady shock , 2001 .

[11]  Dimitris A. Goussis,et al.  Asymptotic Solution of Stiff PDEs with the CSP Method: The Reaction Diffusion Equation , 1998, SIAM J. Sci. Comput..

[12]  Koichi Saito,et al.  Effect of different choices of the Boltzmannized flux operator on rate constants in the Lindemann mechanism , 2004 .

[13]  Hans G. Kaper,et al.  Fast and Slow Dynamics for the Computational Singular Perturbation Method , 2004, Multiscale Model. Simul..

[14]  A. Stuart,et al.  Extracting macroscopic dynamics: model problems and algorithms , 2004 .

[15]  Michael J. Davis,et al.  Geometric investigation of low-dimensional manifolds in systems approaching equilibrium , 1999 .

[16]  Ulrich Maas,et al.  Intrinsic low-dimensional manifolds of strained and unstrained flames , 1998 .

[17]  Christophe Pierre,et al.  Nonlinear Modal Analysis of Structural Systems Using Multi-Mode Invariant Manifolds , 2001 .

[18]  Marc R. Roussel,et al.  Global analysis of enzyme inhibition kinetics , 1993 .

[19]  R. Téman,et al.  Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations , 1988 .

[20]  A. N. Gorban,et al.  Constructive methods of invariant manifolds for kinetic problems , 2003 .

[21]  Ioannis G. Kevrekidis,et al.  Projecting to a Slow Manifold: Singularly Perturbed Systems and Legacy Codes , 2005, SIAM J. Appl. Dyn. Syst..

[22]  S. Lam,et al.  The CSP method for simplifying kinetics , 1994 .

[23]  S. H. Lam,et al.  Using CSP to Understand Complex Chemical Kinetics ∗ , 1992 .

[24]  Michael J. Davis,et al.  Geometrical Simplification of Complex Kinetic Systems , 2001 .

[25]  L.P.H. de Goey,et al.  Modeling of burner-stabilized hydrogen/air flames using mathematically reduced reaction schemes , 1995 .

[26]  U. Maas,et al.  PDF simulation of turbulent non-premixed CH4/H2-air flames using automatically reduced chemical kinetics , 1998 .

[27]  E Pina,et al.  Some mathematical properties of the lindemann mechanism , 1996 .

[28]  Dimitris A. Goussis,et al.  On the Construction and Use of Reduced Chemical Kinetic Mechanisms Produced on the Basis of Given Algebraic Relations , 1996 .

[29]  Simon J. Fraser,et al.  Geometrical picture of reaction in enzyme kinetics , 1989 .

[30]  Marc R. Roussel,et al.  On the geometry of transient relaxation , 1991 .

[31]  Habib N. Najm,et al.  Inertial manifolds with CSP , 2003 .

[32]  A. Gorban,et al.  Invariant Manifolds for Physical and Chemical Kinetics , 2005 .

[33]  Simon J. Fraser,et al.  The steady state and equilibrium approximations: A geometrical picture , 1988 .

[34]  Marc R. Roussel,et al.  Invariant manifold methods for metabolic model reduction. , 2001, Chaos.

[35]  Konstantinos Boulouchos,et al.  Analysis and Reduction of the CH4-Air Mechanism at Lean Conditions , 2000 .

[36]  John Brindley,et al.  Effect of two-step chemistry on the critical extinction-pressure drop for pre-mixed flames , 2003 .

[37]  S. H. Lam,et al.  Understanding complex chemical kinetics with computational singular perturbation , 1989 .

[38]  O. Axelsson Iterative solution methods , 1995 .

[39]  Habib N. Najm,et al.  CSP analysis of a transient flame-vortex interaction: time scales and manifolds , 2003 .

[40]  Habib N. Najm,et al.  Higher order corrections in the approximation of low-dimensional manifolds and the construction of simplified problems with the CSP method , 2005 .

[41]  S. H. Lam,et al.  Conventional asymptotics and computational singular perturbation for simplified kinetics modelling , 1991 .

[42]  Ioannis G. Kevrekidis,et al.  Telescopic projective methods for parabolic differential equations , 2003 .

[43]  Ulrich Maas,et al.  Implementation of simplified chemical kinetics based on intrinsic low-dimensional manifolds , 1992 .

[44]  Audra E. Kosh,et al.  Linear Algebra and its Applications , 1992 .

[45]  de Lph Philip Goey,et al.  Mathematically reduced reaction mechanisms applied to adiabatic flat hydrogen/air flames , 1995 .

[46]  U. Maas,et al.  A general algorithm for improving ILDMs , 2002 .

[47]  Ulrich Maas,et al.  Simplifying chemical kinetics: Intrinsic low-dimensional manifolds in composition space , 1992 .

[48]  H Eyring,et al.  Application of the singular perturbation method to reaction kinetics. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[49]  John J. McKeown,et al.  Matrix computation (2. ed.) , 1992 .

[50]  Samuel Paolucci,et al.  On slow manifolds of chemically reactive systems , 2002 .

[51]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[52]  Iliya V. Karlin,et al.  Method of invariant manifold for chemical kinetics , 2003 .

[53]  Mauro Valorani,et al.  Local and global manifolds in stiff reaction-diffusion systems , 2003 .

[54]  Vladimir Gol'dshtein,et al.  Comparative analysis of two asymptotic approaches based on integral manifolds , 2004 .

[55]  Ulrich Maas,et al.  Simulation of nonequilibrium hypersonic flows , 1993 .

[56]  S. H. Lam,et al.  A study of homogeneous methanol oxidation kinetics using CSP , 1992 .

[57]  Gene H. Golub,et al.  Matrix computations , 1983 .

[58]  S. H. Lam,et al.  CONVENTIONAL ASYMPTOTICS AND COMPUTATIONAL SINGULAR PERTURBATION FOR SIMPLIFIED KINETICS MODELLING , 1999 .

[59]  Samuel Paolucci,et al.  Viscous detonation in H2‒O2‒Ar using intrinsic low-dimensional manifolds and wavelet adaptive multilevel representation , 2001 .

[60]  Hans G. Kaper,et al.  Asymptotic analysis of two reduction methods for systems of chemical reactions , 2002 .

[61]  M. Roussel Forced‐convergence iterative schemes for the approximation of invariant manifolds , 1997 .

[62]  Marc R. Roussel,et al.  Accurate steady-state approximations : implications for kinetics experiments and mechanism , 1991 .

[63]  Ulrich Maas,et al.  Laminar flame calculations using simplified chemical kinetics based on intrinsic low-dimensional manifolds , 1994 .

[64]  Dinh Van Huynh,et al.  Algebra and Its Applications , 2006 .

[65]  钱人元 A New Formulation of the Lindemann Mechanism of Unimolecular Reactions , 2003 .