A Modest Approach to Checking Probabilistic Timed Automata

Probabilistic timed automata (PTA) combine discrete probabilistic choice, real time and nondeterminism. This paper presents a fully automatic tool for model checking PTA with respect to probabilistic and expected reachability properties. PTA are specified in Modest, a high-level compositional modelling language that includes features such as exception handling, dynamic parallelism and recursion, and thus enables model specification in a convenient fashion. For model checking, we use an integral semantics of time, representing clocks with bounded integer variables. This makes it possible to use the probabilistic model checker PRISM as analysis backend. We describe details of the approach and its implementation, and report results obtained for three different case studies.

[1]  Frits W. Vaandrager,et al.  Proof-Checking a Data Link Protocol , 1994, TYPES.

[2]  Ralph Johnson,et al.  design patterns elements of reusable object oriented software , 2019 .

[3]  Joseph Sifakis,et al.  An Algebraic Framework for Urgency , 2000, Inf. Comput..

[4]  Henrik Ejersbo Jensen,et al.  Reachability Analysis of Probabilistic Systems by Successive Refinements , 2001, PAPM-PROBMIV.

[5]  Joost-Pieter Katoen,et al.  Probably on Time and within BudgetOn Reachability in Priced Probabilistic Timed Automata , 2006, Third International Conference on the Quantitative Evaluation of Systems - (QEST'06).

[6]  Marta Z. Kwiatkowska,et al.  Performance analysis of probabilistic timed automata using digital clocks , 2003, Formal Methods Syst. Des..

[7]  R. Segala,et al.  Automatic Verification of Real-Time Systems with Discrete Probability Distributions , 1999, ARTS.

[8]  Theo C. Ruys,et al.  The Bounded Retransmission Protocol Must Be on Time! , 1997, TACAS.

[9]  Thomas A. Henzinger,et al.  Symbolic Model Checking for Real-Time Systems , 1994, Inf. Comput..

[10]  Michel de Champlain,et al.  A Pattern Language To Visitors , 2001 .

[11]  Marta Z. Kwiatkowska,et al.  Probabilistic symbolic model checking with PRISM: a hybrid approach , 2004, International Journal on Software Tools for Technology Transfer.

[12]  Christel Baier,et al.  PROBMELA: a modeling language for communicating probabilistic processes , 2004, Proceedings. Second ACM and IEEE International Conference on Formal Methods and Models for Co-Design, 2004. MEMOCODE '04..

[13]  Rajeev Alur,et al.  A Theory of Timed Automata , 1994, Theor. Comput. Sci..

[14]  Marta Z. Kwiatkowska,et al.  Symbolic model checking for probabilistic timed automata , 2007, Inf. Comput..

[15]  Christel Baier,et al.  Principles of model checking , 2008 .

[16]  Kim G. Larsen,et al.  Reduction and Refinement Strategies for Probabilistic Analysis , 2002, PAPM-PROBMIV.

[17]  Roberto Segala,et al.  Modeling and verification of randomized distributed real-time systems , 1996 .

[18]  Holger Hermanns,et al.  MODEST: A Compositional Modeling Formalism for Hard and Softly Timed Systems , 2006, IEEE Transactions on Software Engineering.

[19]  Conrado Daws,et al.  Automatic verification of the IEEE 1394 root contention protocol with KRONOS and PRISM , 2002, International Journal on Software Tools for Technology Transfer.

[20]  N. S. Barnett,et al.  Private communication , 1969 .