A passive system approach to feedback stabilization of nonlinear control stochastic systems

The purpose of the paper is to prove that stabilizing feedback laws for nonlinear stochastic differential systems affine in the control can be computed provided the unforced dynamics are Lyapunov stable in probability and some rank conditions are fulfilled.

[1]  Miroslav Krstic,et al.  Stabilization of stochastic nonlinear systems driven by noise of unknown covariance , 2001, IEEE Trans. Autom. Control..

[2]  Mathukumalli Vidyasagar,et al.  New passivity-type criteria for large-scale interconnected systems , 1979 .

[3]  A. Isidori,et al.  Passivity, feedback equivalence, and the global stabilization of minimum phase nonlinear systems , 1991 .

[4]  V. Jurdjevic,et al.  Controllability and stability , 1978 .

[5]  P. Moylan,et al.  The stability of nonlinear dissipative systems , 1976 .

[6]  M. Wodzicki Lecture Notes in Math , 1984 .

[7]  David J. Hill,et al.  Stability results for nonlinear feedback systems , 1977, Autom..

[8]  P. Florchinger Lyapunov-like techniques for stochastic stability , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[9]  P. Florchinger Global stabilization of affine stochastic systems , 1997 .

[10]  J. Willems Dissipative dynamical systems part I: General theory , 1972 .

[11]  Aristotle Arapostathis,et al.  Remarks on smooth feedback stabilization of nonlinear systems , 1986, 1986 American Control Conference.

[12]  P. Florchinger A stochastic version of Jurdjevic–Quinn theorem , 1994 .

[13]  P. Florchinger,et al.  Global stabilization of composite stochastic systems , 1997 .

[14]  Nicholas Kalouptsidis,et al.  Stability improvement of nonlinear systems by feedback , 1984 .

[15]  Aristotle Arapostathis,et al.  Remarks on smooth feedback stabilization of nonlinear systems , 1988 .

[16]  H. Kushner,et al.  Converse theorems for stochastic Liapunov functions. , 1967 .

[17]  Wei Lin,et al.  Feedback stabilization of general nonlinear control systems: a passive system approach , 1995 .

[18]  R. Khasminskii Stochastic Stability of Differential Equations , 1980 .