Cultural-based particle swarm for dynamic optimisation problems

Many practical optimisation problems are with the existence of uncertainties, among which a significant number belong to the dynamic optimisation problem (DOP) category in which the fitness function changes through time. In this study, we propose the cultural-based particle swarm optimisation (PSO) to solve DOP problems. A cultural framework is adopted incorporating the required information from the PSO into five sections of the belief space, namely situational, temporal, domain, normative and spatial knowledge. The stored information will be adopted to detect the changes in the environment and assists response to the change through a diversity-based repulsion among particles and migration among swarms in the population space, and also helps in selecting the leading particles in three different levels, personal, swarm and global levels. Comparison of the proposed heuristics over several difficult dynamic benchmark problems demonstrates the better or equal performance with respect to most of other selected state-of-the-art dynamic PSO heuristics.

[1]  Ville Tirronen,et al.  Super-fit control adaptation in memetic differential evolution frameworks , 2009, Soft Comput..

[2]  Kenneth Alan De Jong,et al.  An analysis of the behavior of a class of genetic adaptive systems. , 1975 .

[3]  Shengxiang Yang,et al.  Compound Particle Swarm Optimization in Dynamic Environments , 2008, EvoWorkshops.

[4]  Xiaodong Li,et al.  Particle swarm with speciation and adaptation in a dynamic environment , 2006, GECCO.

[5]  Jun Xu,et al.  Power Portfolio Optimization in Deregulated Electricity Markets With Risk Management , 2004, IEEE Transactions on Power Systems.

[6]  Tim M. Blackwell,et al.  Swarms in Dynamic Environments , 2003, GECCO.

[7]  Lothar Thiele,et al.  A Tutorial on the Performance Assessment of Stochastic Multiobjective Optimizers , 2006 .

[8]  Tim Blackwell,et al.  Particle Swarm Optimization in Dynamic Environments , 2007, Evolutionary Computation in Dynamic and Uncertain Environments.

[9]  Chip Heath,et al.  Who Drives Divergence? Identity-Signaling, Outgroup Dissimilarity, and the Abandonment of Cultural Tastes , 2008, Journal of personality and social psychology.

[10]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[11]  Ville Tirronen,et al.  Fitness diversity based adaptation in Multimeme Algorithms:A comparative study , 2007, 2007 IEEE Congress on Evolutionary Computation.

[12]  Jürgen Branke,et al.  Evolutionary optimization in uncertain environments-a survey , 2005, IEEE Transactions on Evolutionary Computation.

[13]  Russell C. Eberhart,et al.  Tracking and optimizing dynamic systems with particle swarms , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[14]  Mark Sumner,et al.  A Fast Adaptive Memetic Algorithm for Online and Offline Control Design of PMSM Drives , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[15]  Jürgen Branke,et al.  Memory enhanced evolutionary algorithms for changing optimization problems , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[16]  Carlos A. Coello Coello,et al.  Particle Swarm Optimization in Non-stationary Environments , 2004, IBERAMIA.

[17]  Krzysztof Trojanowski,et al.  Non-uniform Distributions of Quantum Particles in Multi-swarm Optimization for Dynamic Tasks , 2008, ICCS.

[18]  Martin Middendorf,et al.  A hierarchical particle swarm optimizer for noisy and dynamic environments , 2006, Genetic Programming and Evolvable Machines.

[19]  Shengxiang Yang,et al.  Evolutionary Computation in Dynamic and Uncertain Environments , 2007, Studies in Computational Intelligence.

[20]  Derek B. Ingham,et al.  Fitness Diversity Based Adaptive Memetic Algorithm for solving inverse problems of chemical kinetics , 2007, 2007 IEEE Congress on Evolutionary Computation.

[21]  Gary G. Yen,et al.  Diversity-Based Information Exchange among Multiple Swarms in Particle Swarm Optimization , 2008, Int. J. Comput. Intell. Appl..

[22]  Robert G. Reynolds,et al.  Cultural algorithms in dynamic environments , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[23]  Gary G. Yen,et al.  Cultural MOPSO: A cultural framework to adapt parameters of multiobjective particle swarm optimization , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[24]  Robert G. Reynolds,et al.  Cultural algorithms: theory and applications , 1999 .

[25]  K. Dejong,et al.  An analysis of the behavior of a class of genetic adaptive systems , 1975 .

[26]  Xiaohua Liu,et al.  Performance of two Improved Particle Swarm Optimization In Dynamic Optimization Environments , 2006, Sixth International Conference on Intelligent Systems Design and Applications.

[27]  Robert G. Reynolds,et al.  CULTURAL ALGORITHMS: COMPUTATIONAL MODELING OF HOW CULTURES LEARN TO SOLVE PROBLEMS: AN ENGINEERING EXAMPLE , 2005, Cybern. Syst..

[28]  Milton E. Rosenbaum,et al.  The repulsion hypothesis: On the nondevelopment of relationships. , 1986 .

[29]  Xiaodong Li,et al.  A particle swarm model for tracking multiple peaks in a dynamic environment using speciation , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[30]  Bin Li,et al.  Multi-strategy ensemble particle swarm optimization for dynamic optimization , 2008, Inf. Sci..

[31]  Peter J. Bentley,et al.  Dynamic Search With Charged Swarms , 2002, GECCO.

[32]  Gary G. Yen,et al.  Talent based social algorithm for optimization , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[33]  Jürgen Branke,et al.  Multi-swarm Optimization in Dynamic Environments , 2004, EvoWorkshops.

[34]  John J. Grefenstette,et al.  Evolvability in dynamic fitness landscapes: a genetic algorithm approach , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[35]  Gary G. Yen,et al.  Constrained Multiple-Swarm Particle Swarm Optimization Within a Cultural Framework , 2012, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[36]  Gary G. Yen,et al.  Dynamic optimization using cultural based PSO , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).

[37]  Xiaodong Li,et al.  This article has been accepted for inclusion in a future issue. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 1 Locating and Tracking Multiple Dynamic Optima by a Particle Swarm Model Using Speciation , 2022 .

[38]  Zheng Qin,et al.  A Modified Particle Swarm Optimizer for Tracking Dynamic Systems , 2005, ICNC.

[39]  T. Back,et al.  On the behavior of evolutionary algorithms in dynamic environments , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[40]  Martin Middendorf,et al.  A Hierarchical Particle Swarm Optimizer for Dynamic Optimization Problems , 2004, EvoWorkshops.

[41]  Robert G. Reynolds,et al.  Cultural algorithms: knowledge learning in dynamic environments , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[42]  Russell C. Eberhart,et al.  Adaptive particle swarm optimization: detection and response to dynamic systems , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[43]  Ferrante Neri,et al.  An Adaptive Multimeme Algorithm for Designing HIV Multidrug Therapies , 2007, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[44]  Peter J. Angeline,et al.  Tracking Extrema in Dynamic Environments , 1997, Evolutionary Programming.

[45]  Michael N. Vrahatis,et al.  Unified Particle Swarm Optimization in Dynamic Environments , 2005, EvoWorkshops.

[46]  R.W. Morrison,et al.  A test problem generator for non-stationary environments , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[47]  Xiaodong Li,et al.  Particle Swarms for Dynamic Optimization Problems , 2008, Swarm Intelligence.

[48]  Gary G. Yen,et al.  Cultural-Based Multiobjective Particle Swarm Optimization , 2011, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[49]  Jürgen Branke,et al.  Evolutionary Optimization in Dynamic Environments , 2001, Genetic Algorithms and Evolutionary Computation.

[50]  Gary G. Yen,et al.  Solving constrained optimization using multiple swarm cultural PSO with inter-swarm communication , 2010, IEEE Congress on Evolutionary Computation.

[51]  R. Reynolds AN INTRODUCTION TO CULTURAL ALGORITHMS , 2008 .

[52]  Gerry Dozier,et al.  Adapting Particle Swarm Optimizationto Dynamic Environments , 2001 .

[53]  Ernesto Costa,et al.  A Particle Swarm Model of Organizational Adaptation , 2004, GECCO.

[54]  Ville Tirronen,et al.  An Enhanced Memetic Differential Evolution in Filter Design for Defect Detection in Paper Production , 2008, Evolutionary Computation.

[55]  Jürgen Branke,et al.  Multiswarms, exclusion, and anti-convergence in dynamic environments , 2006, IEEE Transactions on Evolutionary Computation.

[56]  Gary G. Yen,et al.  Cultural Multiobjective PSO with Sensitivity Analysis for Parameters Using Additive Binary epsilon Indicator , 2011, Int. J. Comput. Intell. Appl..