Proteomic Analysis of the Eyespot of Chlamydomonas reinhardtii Provides Novel Insights into Its Components and Tactic Movements[W]

Flagellate green algae have developed a visual system, the eyespot apparatus, which allows the cell to phototax. To further understand the molecular organization of the eyespot apparatus and the phototactic movement that is controlled by light and the circadian clock, a detailed understanding of all components of the eyespot apparatus is needed. We developed a procedure to purify the eyespot apparatus from the green model alga Chlamydomonas reinhardtii. Its proteomic analysis resulted in the identification of 202 different proteins with at least two different peptides (984 in total). These data provide new insights into structural components of the eyespot apparatus, photoreceptors, retina(l)-related proteins, members of putative signaling pathways for phototaxis and chemotaxis, and metabolic pathways within an algal visual system. In addition, we have performed a functional analysis of one of the identified putative components of the phototactic signaling pathway, casein kinase 1 (CK1). CK1 is also present in the flagella and thus is a promising candidate for controlling behavioral responses to light. We demonstrate that silencing CK1 by RNA interference reduces its level in both flagella and eyespot. In addition, we show that silencing of CK1 results in severe disturbances in hatching, flagellum formation, and circadian control of phototaxis.

[1]  J. W. Hastings,et al.  Action Spectrum for Resetting the Circadian Phototaxis Rhythm in the CW15 Strain of Chlamydomonas: I. Cells in Darkness. , 1991, Plant physiology.

[2]  Jay C Dunlap,et al.  The Neurospora Circadian System , 2004, Journal of biological rhythms.

[3]  P. Walne,et al.  The comparative ultrastructure and possible function of eyespots: Euglena granulata and Chlamydomonas eugametos , 1967, Planta.

[4]  Peter Hegemann,et al.  "Vision" in single-celled algae. , 2004, News in physiological sciences : an international journal of physiology produced jointly by the International Union of Physiological Sciences and the American Physiological Society.

[5]  M. Melkonian,et al.  Functional analysis of the eyespot in Chlamydomonas reinhardtii mutant ey 627, mt− , 1992, Planta.

[6]  C. Dieckmann,et al.  Eyespot-assembly mutants in Chlamydomonas reinhardtii. , 1999, Genetics.

[7]  G. Pazour,et al.  Proteomic analysis of a eukaryotic cilium , 2005, The Journal of cell biology.

[8]  Kwang-Hwan Jung,et al.  Chlamydomonas sensory rhodopsins A and B: cellular content and role in photophobic responses. , 2004, Biophysical journal.

[9]  A. Krogh,et al.  Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. , 2001, Journal of molecular biology.

[10]  Gunther Gessner,et al.  Analysis of the Phosphoproteome of Chlamydomonas reinhardtii Provides New Insights into Various Cellular Pathways , 2006, Eukaryotic Cell.

[11]  H. Zimmer,et al.  A simple, versatile, sensitive and volume-independent method for quantitative protein determination which is independent of other external influences. , 1979, Hoppe-Seyler's Zeitschrift fur physiologische Chemie.

[12]  J. Dunlap Molecular Bases for Circadian Clocks , 1999, Cell.

[13]  V. Wagner,et al.  The Circadian RNA-Binding Protein CHLAMY 1 Represents a Novel Type Heteromer of RNA Recognition Motif and Lysine Homology Domain-Containing Subunits , 2004, Eukaryotic Cell.

[14]  W. Sale,et al.  Casein Kinase I Is Anchored on Axonemal Doublet Microtubules and Regulates Flagellar Dynein Phosphorylation and Activity* , 2000, The Journal of Biological Chemistry.

[15]  D. Mergenhagen Circadian clock: genetic characterization of a short period mutant of Chlamydomonas reinhardii. , 1984, European journal of cell biology.

[16]  E. Bamberg,et al.  Channelrhodopsin-1: A Light-Gated Proton Channel in Green Algae , 2002, Science.

[17]  V. Bruce The Biological Clock in Chlamydomonas reinhardi , 1970 .

[18]  M. Melkonian,et al.  Reflection confocal laser scanning microscopy of eyespots in flagellated green algae. , 1990, European journal of cell biology.

[19]  H. Fukuzawa,et al.  Archaeal-type rhodopsins in Chlamydomonas: model structure and intracellular localization. , 2003, Biochemical and biophysical research communications.

[20]  E. Govorunova,et al.  Chapter 9 Electrical events in photomovement of green flagellated algae , 2001 .

[21]  H. Lichtenthaler CHLOROPHYLL AND CAROTENOIDS: PIGMENTS OF PHOTOSYNTHETIC BIOMEMBRANES , 1987 .

[22]  K. Kindle High-frequency nuclear transformation of Chlamydomonas reinhardtii. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[23]  P. Tarroux,et al.  Improvement and simplification of low‐background silver staining of proteins by using sodium dithionite , 1988, Electrophoresis.

[24]  Kay Hofmann,et al.  Tmbase-A database of membrane spanning protein segments , 1993 .

[25]  A. Grossman,et al.  Expression of the arylsulfatase gene from the beta 2-tubulin promoter in Chlamydomonas reinhardtii. , 1992, Nucleic acids research.

[26]  J. Pozueta-Romero,et al.  A Ubiquitous Plant Housekeeping Gene, PAP, Encodes a Major Protein Component of Bell Pepper Chromoplasts , 1997, Plant physiology.

[27]  W. Gehring Historical perspective on the development and evolution of eyes and photoreceptors. , 2004, The International journal of developmental biology.

[28]  P. Hegemann,et al.  Two light-activated conductances in the eye of the green alga Volvox carteri. , 1999, Biophysical journal.

[29]  G. Kreimer,et al.  Calcium modulates rapid protein phosphorylation/dephosphorylation in isolated eyespot apparatuses of the green alga Spermatozopsis similis , 1995, Planta.

[30]  G Peltier,et al.  Molecular characterization of CDSP 34, a chloroplastic protein induced by water deficit in Solanum tuberosum L. plants, and regulation of CDSP 34 expression by ABA and high illumination. , 1998, The Plant journal : for cell and molecular biology.

[31]  P. Hegemann,et al.  A synthetic gene coding for the green fluorescent protein (GFP) is a versatile reporter in Chlamydomonas reinhardtii. , 1999, The Plant journal : for cell and molecular biology.

[32]  C. Dieckmann,et al.  Toward a protein map of the green algal eyespot: analysis of eyespot globule-associated proteins , 2006 .

[33]  R. Uhl,et al.  A microspectrophotometric study of the shielding properties of eyespot and cell body in Chlamydomonas. , 1997, Biophysical journal.

[34]  Masakatsu Watanabe,et al.  Chlamydomonas reinhardtii Dangeard (Chlamydomonadales, Chlorophyceae) mutant with multiple eyespots , 2001 .

[35]  H. Ohta,et al.  ARC3, a chloroplast division factor, is a chimera of prokaryotic FtsZ and part of eukaryotic phosphatidylinositol-4-phosphate 5-kinase. , 2004, Plant & cell physiology.

[36]  S. Reppert,et al.  Discovery of a putative heme-binding protein family (SOUL/HBP) by two-tissue suppression subtractive hybridization and database searches. , 1999, Brain research. Molecular brain research.

[37]  S. Reppert,et al.  Coordination of circadian timing in mammals , 2002, Nature.

[38]  G Peltier,et al.  Over-expression of a pepper plastid lipid-associated protein in tobacco leads to changes in plastid ultrastructure and plant development upon stress. , 2000, The Plant journal : for cell and molecular biology.

[39]  K. Deisseroth,et al.  Millisecond-timescale, genetically targeted optical control of neural activity , 2005, Nature Neuroscience.

[40]  T. Uchida,et al.  SOUL in mouse eyes is a new hexameric heme-binding protein with characteristic optical absorption, resonance Raman spectral, and heme-binding properties. , 2004, Biochemistry.

[41]  J. Stock,et al.  Bacterial chemotaxis , 2003, Current Biology.

[42]  E. Govorunova,et al.  Chemotaxis in the Green Flagellate Alga Chlamydomonas , 2005, Biochemistry (Moscow).

[43]  Myriam Ferro,et al.  Identification of New Intrinsic Proteins in Arabidopsis Plasma Membrane Proteome*S , 2004, Molecular & Cellular Proteomics.

[44]  J. Yates,et al.  An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database , 1994, Journal of the American Society for Mass Spectrometry.

[45]  Peter Roepstorff,et al.  Central Functions of the Lumenal and Peripheral Thylakoid Proteome of Arabidopsis Determined by Experimentation and Genome-Wide Prediction Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.010304. , 2002, The Plant Cell Online.

[46]  E. Bamberg,et al.  Channelrhodopsin-2, a directly light-gated cation-selective membrane channel , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[47]  E. Bamberg,et al.  Light Activation of Channelrhodopsin-2 in Excitable Cells of Caenorhabditis elegans Triggers Rapid Behavioral Responses , 2005, Current Biology.

[48]  E. Ermilova,et al.  Phototropin plays a crucial role in controlling changes in chemotaxis during the initial phase of the sexual life cycle in Chlamydomonas , 2004, Planta.

[49]  G. Blobel,et al.  Identification of proteins associated with plastoglobules isolated from pea (Pisum sativum L.) chloroplasts , 1999, Planta.

[50]  C. Johnson,et al.  Circadian rhythms of chemotaxis to ammonium and of methylammonium uptake in chlamydomonas. , 1992, Plant physiology.

[51]  S. Kay,et al.  Molecular bases of circadian rhythms. , 2001, Annual review of cell and developmental biology.

[52]  J. Yates,et al.  Proteomic Analysis of Isolated Chlamydomonas Centrioles Reveals Orthologs of Ciliary-Disease Genes , 2005, Current Biology.

[53]  Hendrik Szurmant,et al.  Diversity in Chemotaxis Mechanisms among the Bacteria and Archaea , 2004, Microbiology and Molecular Biology Reviews.

[54]  Kaiyao Huang,et al.  Localization of the blue-light receptor phototropin to the flagella of the green alga Chlamydomonas reinhardtii. , 2004, Molecular biology of the cell.

[55]  P. Hegemann,et al.  The abundant retinal protein of the Chlamydomonas eye is not the photoreceptor for phototaxis and photophobic responses. , 2001, Journal of cell science.

[56]  P. Hegemann,et al.  The nature of rhodopsin-triggered photocurrents in Chlamydomonas. I. Kinetics and influence of divalent ions. , 1996, Biophysical journal.

[57]  J. Yates,et al.  Direct analysis of protein complexes using mass spectrometry , 1999, Nature Biotechnology.

[58]  K. Foster,et al.  Light Antennas in phototactic algae. , 1980, Microbiological reviews.

[59]  K. Palczewski,et al.  Activation and inactivation steps in the visual transduction pathway , 1997, Current Opinion in Neurobiology.

[60]  G. Kreimer,et al.  Subfractionation of eyespot apparatuses from the green alga Spermatozopsis similis: isolation and characterization of eyespot globules , 2001, Planta.

[61]  N. Chua,et al.  Thylakoid membrane polypeptides of Chlamydomonas reinhardtii: wild-type and mutant strains deficient in photosystem II reaction center. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[62]  Light- and Ca2+-Modulated Heterotrimeric GTPases in the Eyespot Apparatus of a Flagellate Green Alga , 1998, Plant Cell.

[63]  M. Kalive,et al.  Drosophila doubletime Mutations Which either Shorten or Lengthen the Period of Circadian Rhythms Decrease the Protein Kinase Activity of Casein Kinase I , 2004, Molecular and Cellular Biology.

[64]  A. Grossman,et al.  Chlamydomonas reinhardtii in the landscape of pigments. , 2004, Annual review of genetics.

[65]  W. Majeran,et al.  Functional Differentiation of Bundle Sheath and Mesophyll Maize Chloroplasts Determined by Comparative Proteomicsw⃞ , 2005, The Plant Cell Online.

[66]  C. Johnson,et al.  The Circadian Clock in Chlamydomonas reinhardtii. What Is It For? What Is It Similar To?1 , 2005, Plant Physiology.

[67]  G. Witman Chlamydomonas phototaxis. , 1993, Trends in cell biology.

[68]  Thomas Girke,et al.  The Vegetative Vacuole Proteome of Arabidopsis thaliana Reveals Predicted and Unexpected Proteinsw⃞ , 2004, The Plant Cell Online.

[69]  Oleg A. Sineshchekov,et al.  Two rhodopsins mediate phototaxis to low- and high-intensity light in Chlamydomonas reinhardtii , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[70]  John M. Walker,et al.  The Proteomics Protocols Handbook , 2005, Humana Press.

[71]  C. Dieckmann,et al.  Characterization of the EYE2 gene required for eyespot assembly in Chlamydomonas reinhardtii. , 2001, Genetics.

[72]  G. Friso,et al.  In-Depth Analysis of the Thylakoid Membrane Proteome of Arabidopsis thaliana Chloroplasts: New Proteins, New Functions, and a Plastid Proteome Database On-line version contains Web-only data. , 2004, The Plant Cell Online.

[73]  Pascal Rey,et al.  Immunocytolocalization of CDSP 32 and CDSP 34, two chloroplastic drought-induced stress proteins in Solanum tuberosum plants , 1999 .

[74]  Kaiyao Huang,et al.  Phototropin is the blue-light receptor that controls multiple steps in the sexual life cycle of the green alga Chlamydomonas reinhardtii , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[75]  J. W. Hastings,et al.  Action Spectrum for Resetting the Circadian Phototaxis Rhythm in the CW15 Strain of Chlamydomonas: II. Illuminated Cells. , 1991, Plant physiology.

[76]  Heribert Hirt,et al.  Plant PP2C phosphatases: emerging functions in stress signaling. , 2004, Trends in plant science.

[77]  P. Hegemann,et al.  A Streptomyces rimosus aphVIII gene coding for a new type phosphotransferase provides stable antibiotic resistance to Chlamydomonas reinhardtii. , 2001, Gene.

[78]  J. Yates,et al.  Large-scale analysis of the yeast proteome by multidimensional protein identification technology , 2001, Nature Biotechnology.

[79]  J. Yates,et al.  Proteomic Characterization of the Small Subunit of Chlamydomonas reinhardtii Chloroplast Ribosome , 2002, The Plant Cell Online.

[80]  E. Govorunova,et al.  Rhodopsin-mediated photosensing in green flagellated algae. , 1999, Trends in plant science.

[81]  C. Dieckmann,et al.  Eyespot placement and assembly in the green alga Chlamydomonas. , 2003, BioEssays : news and reviews in molecular, cellular and developmental biology.

[82]  V. Wagner,et al.  Functional proteomics of circadian expressed proteins from Chlamydomonas reinhardtii , 2004, FEBS letters.

[83]  P. Beyer,et al.  Retinal biosynthesis in Eubacteria: in vitro characterization of a novel carotenoid oxygenase from Synechocystis sp. PCC 6803 , 2004, Molecular microbiology.

[84]  Satchidananda Panda,et al.  Circadian rhythms from flies to human , 2002, Nature.

[85]  T. Merkle,et al.  Isolation and characterization of a Chlamydomonas gene that encodes a putative blue-light photoreceptor of the phototropin family. , 2002, Physiologia plantarum.

[86]  W. Sale,et al.  The 9 + 2 Axoneme Anchors Multiple Inner Arm Dyneins and a Network of Kinases and Phosphatases That Control Motility , 2000, The Journal of cell biology.

[87]  G von Heijne,et al.  Membrane protein structure prediction. Hydrophobicity analysis and the positive-inside rule. , 1992, Journal of molecular biology.

[88]  S. He,et al.  Harpin, elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora. , 1992, Science.

[89]  M. Iino,et al.  Junctophilins: a novel family of junctional membrane complex proteins. , 2000, Molecular cell.

[90]  G. Heijne Membrane protein structure prediction. Hydrophobicity analysis and the positive-inside rule. , 1992, Journal of molecular biology.

[91]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[92]  P. Hegemann,et al.  The Photoreceptor Current of the Green Alga Chlamydomonas , 1992 .

[93]  R D Appel,et al.  Protein identification and analysis tools in the ExPASy server. , 1999, Methods in molecular biology.

[94]  G. Kreimer Cell biology of phototaxis in flagellate algae , 1994 .

[95]  Hartmann Harz,et al.  Rhodopsin-regulated calcium currents in Chlamydomonas , 1991, Nature.

[96]  M. Kuntz,et al.  Fibril assembly and carotenoid overaccumulation in chromoplasts: a model for supramolecular lipoprotein structures. , 1994, The Plant cell.

[97]  E. Govorunova,et al.  Integration of photo- and chemosensory signaling pathways in Chlamydomonas , 2002, Planta.

[98]  J. Hartshorne THE FUNCTION OF THE EYESPOT IN CHLAM YDOMONAS , 1953 .

[99]  W. Deininger,et al.  Chlamyrhodopsin represents a new type of sensory photoreceptor. , 1995, The EMBO journal.

[100]  G. Pazour,et al.  Mutational analysis of the phototransduction pathway of Chlamydomonas reinhardtii , 1995, The Journal of cell biology.

[101]  M. Mittag Conserved circadian elements in phylogenetically diverse algae. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[102]  M. Feinleib,et al.  PHOTOMOVEMENT IN AN “EYELESS” MUTANT OF Chlamydomonas , 1983 .

[103]  Albert Sickmann,et al.  Challenges in mass spectrometry‐based proteomics , 2004, Proteomics.

[104]  Kaiyao Huang,et al.  Localization of the BlueLight Receptor Phototropin to the Flagella of the Green Alga Chlamydomonas reinhardtii , 2004 .