Multiple Emission Lines of Hα Emitters at z ∼ 2.3 from the Broad- and Medium-band Photometry in the ZFOURGE Survey

We present a multiple emission line study of ∼1300 Hα emitters (HAEs) at z ∼ 2.3 in the ZFOURGE survey. In contrast to the traditional spectroscopic method, our sample is selected based on the flux excess in the ZFOURGE K s broadband data relative to the best-fit stellar continuum. Using the same method, we also extract the strong diagnostic emission lines for these individual HAEs: [O iii] λ λ4959, 5007 and [O ii] λ λ3726, 3729. Our measurements demonstrate good consistency with those obtained from spectroscopic surveys. We investigate the relationship between the equivalent widths (EWs) of these emission lines and various galaxy properties, including stellar mass, stellar age, star formation rate, specific star formation rate, and ionization state (O32). We have identified a discrepancy between HAEs at z ∼ 2.3 and typical local star-forming galaxies observed in the Sloan Digital Sky Survey, suggesting the evolution of lower gas-phase metallicity (Z) and higher ionization parameters (U) with redshift. Notably, we have observed a significant number of low-mass HAEs exhibiting exceptionally high EW[O iii]. Their galaxy properties are comparable to those of extreme objects, such as extreme O3 emitters and Lyα emitters at z ≃ 2–3. Considering that these characteristics may indicate potential strong Lyman continuum leakage, higher-redshift analogs of the low-mass HAEs could be significant contributors to the cosmic reionization. Further investigations of this particular population are required to gain a clearer understanding of galaxy evolution and cosmic reionization.

[1]  M. Oguri,et al.  JWST Census for the Mass–Metallicity Star Formation Relations at z = 4–10 with Self-consistent Flux Calibration and Proper Metallicity Calibrators , 2023, The Astrophysical Journal Supplement Series.

[2]  D. Eisenstein,et al.  JADES Initial Data Release for the Hubble Ultra Deep Field: Revealing the Faint Infrared Sky with Deep JWST NIRCam Imaging , 2023, The Astrophysical Journal Supplement Series.

[3]  L. Y. Aaron Yung,et al.  CEERS Epoch 1 NIRCam Imaging: Reduction Methods and Simulations Enabling Early JWST Science Results , 2022, The Astrophysical Journal Letters.

[4]  K. Motohara,et al.  A Selection of Hα Emitters at z = 2.1–2.5 Using the K s -band Photometry of ZFOURGE , 2022, The Astrophysical Journal.

[5]  G. Illingworth,et al.  The Star Formation Burstiness and Ionizing Efficiency of Low-mass Galaxies , 2022, 2202.04081.

[6]  A. Coil,et al.  The MOSDEF survey: a comprehensive analysis of the rest-optical emission-line properties of z ∼ 2.3 star-forming galaxies , 2021, Monthly Notices of the Royal Astronomical Society.

[7]  Mamoru Doi,et al.  The University of Tokyo Atacama Observatory 6.5m telescope : On-sky performance of the near-infrared instrument SWIMS on the Subaru telescope , 2020, Ground-based and Airborne Instrumentation for Astronomy VIII.

[8]  M. Hayashi,et al.  Broadband Selection, Spectroscopic Identification, and Physical Properties of a Population of Extreme Emission-line Galaxies at 3 < z < 3.7 , 2020, The Astrophysical Journal.

[9]  A. Coil,et al.  The MOSDEF Survey: The First Direct Measurements of the Nebular Dust Attenuation Curve at High Redshift , 2020, The Astrophysical Journal.

[10]  A. Coil,et al.  The MOSDEF-LRIS Survey: The connection between massive stars and ionized gas in individual galaxies at z ∼ 2 , 2020, Monthly Notices of the Royal Astronomical Society.

[11]  O. Ilbert,et al.  The synthetic Emission Line COSMOS catalogue: Hα and [O ii] galaxy luminosity functions and counts at 0.3 < z < 2.5 , 2020, Monthly Notices of the Royal Astronomical Society.

[12]  K. Shimasaku,et al.  Environmental Dependence of Galactic Properties Traced by Lyα Forest Absorption: Diversity among Galaxy Populations , 2020, 2002.07335.

[13]  R. Ellis,et al.  The Lyman Continuum Escape Survey. II. Ionizing Radiation as a Function of the [O iii]/[O ii] Line Ratio , 2019, The Astrophysical Journal.

[14]  P. Capak,et al.  The Recent Burstiness of Star Formation in Galaxies at z ∼ 4.5 from Hα Measurements , 2019, The Astrophysical Journal.

[15]  C. Scarlata,et al.  New Insights on Lyα and Lyman Continuum Radiative Transfer in the Greenest Peas , 2019, The Astrophysical Journal.

[16]  A. Coil,et al.  The MOSDEF survey: direct-method metallicities and ISM conditions at z ∼ 1.5–3.5 , 2019, Monthly Notices of the Royal Astronomical Society.

[17]  A. Coil,et al.  The MOSDEF Survey: Significant Evolution in the Rest-frame Optical Emission Line Equivalent Widths of Star-forming Galaxies at z = 1.4–3.8 , 2018, The Astrophysical Journal.

[18]  D. Corre,et al.  CIGALE: a python Code Investigating GALaxy Emission , 2018, Astronomy & Astrophysics.

[19]  Benjamin D. Johnson,et al.  zfourge: Extreme 5007 Å Emission May Be a Common Early-lifetime Phase for Star-forming Galaxies at z > 2.5 , 2018, The Astrophysical Journal.

[20]  S. Charlot,et al.  MMT/MMIRS spectroscopy of z = 1.3 - 2.4 extreme [O iii] emitters: implications for galaxies in the reionization era , 2018, Monthly Notices of the Royal Astronomical Society.

[21]  C. Papovich,et al.  ZFOURGE: Using Composite Spectral Energy Distributions to Characterize Galaxy Populations at 1 < z < 4 , 2018, The Astrophysical Journal.

[22]  E. Stanway,et al.  Re-evaluating old stellar populations , 2018, 1805.08784.

[23]  L. Kewley,et al.  “Direct” Gas-phase Metallicity in Local Analogs of High-redshift Galaxies: Empirical Metallicity Calibrations for High-redshift Star-forming Galaxies , 2018, The Astrophysical Journal.

[24]  D. Sobral,et al.  Slicing COSMOS with SC4K: the evolution of typical Ly α emitters and the Ly α escape fraction from z ∼ 2 to 6 , 2017, 1712.04451.

[25]  A. Coil,et al.  The MOSDEF Survey: A Stellar Mass–SFR–Metallicity Relation Exists at z ∼ 2.3 , 2017, 1711.00224.

[26]  N. Kashikawa,et al.  Direct evidence for Ly$\boldsymbol{\alpha }$ depletion in the protocluster core , 2017, 1702.00100.

[27]  C. Leitherer,et al.  Lyα Profile, Dust, and Prediction of Lyα Escape Fraction in Green Pea Galaxies , 2017, 1701.01857.

[28]  Mamoru Doi,et al.  NIR camera and spectrograph SWIMS for TAO 6.5m telescope: overview and development status , 2016, Astronomical Telescopes + Instrumentation.

[29]  O. Fèvre,et al.  THE COSMOS2015 CATALOG: EXPLORING THE 1 < z < 6 UNIVERSE WITH HALF A MILLION GALAXIES , 2016, 1604.02350.

[30]  I. Smail,et al.  The nature of Hβ+[O III] and [O II] emitters to z ∼ 5 with HiZELS: stellar mass functions and the evolution of EWs , 2016, 1604.02456.

[31]  H. Rottgering,et al.  The CALYMHA survey: Lyα escape fraction and its dependence on galaxy properties at z = 2.23 , 2016, 1602.02756.

[32]  A. Hopkins,et al.  ZFOURGE catalogue of AGN candidates: an enhancement of 160-μm-derived star formation rates in active galaxies to z = 3.2 , 2016, 1601.02016.

[33]  Mattia Fumagalli,et al.  THE 3D-HST SURVEY: HUBBLE SPACE TELESCOPE WFC3/G141 GRISM SPECTRA, REDSHIFTS, AND EMISSION LINE MEASUREMENTS FOR ∼100,000 GALAXIES , 2015, 1510.02106.

[34]  I. Smail,et al.  On the nature of Hα emitters at z ˜ 2 from the HiZELS survey: physical properties, Lyα escape fraction and main sequence , 2015, 1506.02670.

[35]  Alison L. Coil,et al.  THE MOSFIRE DEEP EVOLUTION FIELD (MOSDEF) SURVEY: REST-FRAME OPTICAL SPECTROSCOPY FOR ∼1500 H-SELECTED GALAXIES AT 1.37 ≤ z ≤ 3.8 ?> , 2014, 1412.1835.

[36]  J. Silverman,et al.  A HIGHLY CONSISTENT FRAMEWORK FOR THE EVOLUTION OF THE STAR-FORMING “MAIN SEQUENCE” FROM z ∼ 0–6 , 2014, 1405.2041.

[37]  M. Giavalisco,et al.  A galaxy rapidly forming stars 700 million years after the Big Bang at redshift 7.51 , 2013, Nature.

[38]  M. Ouchi,et al.  Ionization state of inter-stellar medium in galaxies: evolution, SFR-M * -Z dependence, and ionizing photon escape , 2013, 1309.0207.

[39]  Stephen A. Smee,et al.  FourStar: The Near-Infrared Imager for the 6.5 m Baade Telescope at Las Campanas Observatory , 2013 .

[40]  Mamoru Doi,et al.  Design and development of SWIMS: a near-infrared multi-object spectrograph for the University of Tokyo Atacama Observatory , 2012, Other Conferences.

[41]  N. Evans,et al.  Star Formation in the Milky Way and Nearby Galaxies , 2012, 1204.3552.

[42]  Garth D. Illingworth,et al.  3D-HST: A WIDE-FIELD GRISM SPECTROSCOPIC SURVEY WITH THE HUBBLE SPACE TELESCOPE , 2012, 1204.2829.

[43]  Michele Cirasuolo,et al.  A large Hα survey at z = 2.23, 1.47, 0.84 and 0.40: the 11 Gyr evolution of star-forming galaxies from HiZELS , 2012, 1202.3436.

[44]  A. Inoue Rest-frame ultraviolet-to-optical spectral characteristics of extremely metal-poor and metal-free galaxies , 2011, 1102.5150.

[45]  M. Swinbank,et al.  The emission line properties of gravitationally lensed 1.5 < z < 5 galaxies , 2010, 1011.6413.

[46]  Mamoru Doi,et al.  The University of Tokyo Atacama Observatory 6.5m telescope project , 2010, Astronomical Telescopes + Instrumentation.

[47]  F. Mannucci,et al.  A fundamental relation between mass, SFR and metallicity in local and high redshift galaxies , 2010, 1005.0006.

[48]  C. Leitherer,et al.  Escape of about five per cent of Lyman-α photons from high-redshift star-forming galaxies , 2010, Nature.

[49]  V. Buat,et al.  Analysis of galaxy spectral energy distributions from far-UV to far-IR with CIGALE: studying a SINGS test sample , 2009, 0909.5439.

[50]  C. Lintott,et al.  Galaxy Zoo Green Peas: discovery of a class of compact extremely star-forming galaxies , 2009, 0907.4155.

[51]  G. Brammer,et al.  The NEWFIRM Medium-Band Survey: Filter Definitions and First Results , 2009, 0901.0551.

[52]  Paolo Coppi,et al.  EAZY: A Fast, Public Photometric Redshift Code , 2008, 0807.1533.

[53]  M. Dopita,et al.  [O iii] emitters in the field of the MRC 0316–257 protocluster , 2008, 0807.0152.

[54]  D. Calzetti,et al.  COSMOS: Hubble Space Telescope Observations , 2006, astro-ph/0612306.

[55]  P. P. van der Werf,et al.  What Do We Learn from IRAC Observations of Galaxies at 2 < z < 3.5? , 2006, astro-ph/0609548.

[56]  M. Irwin,et al.  The UKIRT Infrared Deep Sky Survey (UKIDSS) , 2006, astro-ph/0604426.

[57]  Spain.,et al.  Star formation and dust attenuation properties in galaxies from a statistical ultraviolet‐to‐far‐infrared analysis , 2005, astro-ph/0504434.

[58]  M. Pettini,et al.  [O III] / [N II] as an abundance indicator at high redshift , 2004, astro-ph/0401128.

[59]  J. Brinkmann,et al.  The physical properties of star-forming galaxies in the low-redshift universe , 2003, astro-ph/0311060.

[60]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[61]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[62]  J. Brinkmann,et al.  The Host Galaxies of AGN , 2003, astro-ph/0304239.

[63]  Harvard-Smithsonian CfA,et al.  Using Strong Lines to Estimate Abundances in Extragalactic H II Regions and Starburst Galaxies , 2002, astro-ph/0206495.

[64]  Roberto Gilmozzi,et al.  Chandra Deep Field South: The 1 Ms Catalog , 2002 .

[65]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.

[66]  S. M. Fall,et al.  A Simple Model for the Absorption of Starlight by Dust in Galaxies , 2000, astro-ph/0003128.

[67]  G. Ferland,et al.  CLOUDY 90: Numerical Simulation of Plasmas and Their Spectra , 1998 .

[68]  C. Leitherer,et al.  H II Galaxies versus Photoionization Models for Evolving Starbursts , 1996 .

[69]  A. Kinney,et al.  Dust extinction of the stellar continua in starburst galaxies: The Ultraviolet and optical extinction law , 1994 .

[70]  R. Terlevich,et al.  The Primordial helium abundance from observations of extragalactic H-II regions , 1992 .

[71]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[72]  J. B. Oke,et al.  Secondary standard stars for absolute spectrophotometry , 1983 .

[73]  Bernard E. J. Pagel,et al.  On the composition of H II regions in southern galaxies – I. NGC 300 and 1365 , 1979 .