Genetic variation in MHC proteins is associated with T cell receptor expression biases

[1]  P. Donnelly,et al.  A Flexible and Accurate Genotype Imputation Method for the Next Generation of Genome-Wide Association Studies , 2009, PLoS genetics.

[2]  S. Holland,et al.  The T-cell receptor is not hardwired to engage MHC ligands , 2012, Proceedings of the National Academy of Sciences.

[3]  M. Stephens,et al.  Imputation-Based Analysis of Association Studies: Candidate Regions and Quantitative Traits , 2007, PLoS genetics.

[4]  L. Kruglyak,et al.  Genetics of global gene expression , 2006, Nature Reviews Genetics.

[5]  Pardis C Sabeti,et al.  A high-resolution HLA and SNP haplotype map for disease association studies in the extended human MHC , 2006, Nature Genetics.

[6]  Diana Brahams,et al.  Medicine and the Law , 1983, The Lancet.

[7]  James McCluskey,et al.  T cell antigen receptor recognition of antigen-presenting molecules. , 2015, Annual review of immunology.

[8]  J. Roudier Association of MHC and rheumatoid arthritis: Association of RA with HLA-DR4 - the role of repertoire selection , 2000, Arthritis research.

[9]  J. Silver,et al.  Do HLA genes play a prominent role in determining T cell receptor V alpha segment usage in humans? , 1995, Journal of immunology.

[10]  Buhm Han,et al.  Additive and interaction effects at three amino acid positions in HLA-DQ and HLA-DR molecules drive type 1 diabetes risk , 2015, Nature Genetics.

[11]  D. Koller,et al.  Characterizing the genetic basis of transcriptome diversity through RNA-sequencing of 922 individuals , 2013, Genome research.

[12]  James McCluskey,et al.  T cell receptor reversed polarity recognition of a self-antigen major histocompatibility complex , 2015, Nature Immunology.

[13]  P. Marrack,et al.  Germline-encoded amino acids in the αβ T cell receptor control thymic selection , 2009, Nature.

[14]  Nicole Soranzo,et al.  Quantitative trait loci for CD4:CD8 lymphocyte ratio are associated with risk of type 1 diabetes and HIV-1 immune control. , 2010, American journal of human genetics.

[15]  E. Eskin,et al.  Integrating Functional Data to Prioritize Causal Variants in Statistical Fine-Mapping Studies , 2014, PLoS genetics.

[16]  Robyn L Stanfield,et al.  How TCRs bind MHCs, peptides, and coreceptors. , 2006, Annual review of immunology.

[17]  Vasso Apostolopoulos,et al.  Structural Comparison of Allogeneic and Syngeneic T Cell Receptor–Peptide-Major Histocompatibility Complex Complexes , 2002, The Journal of experimental medicine.

[18]  I. Messaoudi,et al.  Direct Link Between mhc Polymorphism, T Cell Avidity, and Diversity in Immune Defense , 2002, Science.

[19]  Olivier Delaneau,et al.  Integrating sequence and array data to create an improved 1000 Genomes Project haplotype reference panel , 2014, Nature Communications.

[20]  L. Imberti,et al.  Use of variable human Vδ genes to create functional T cell receptor α chain transcripts , 1991 .

[21]  Cisca Wijmenga,et al.  Fine-mapping in the MHC region accounts for 18% additional genetic risk for celiac disease , 2015, Nature Genetics.

[22]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  Zhiping Weng,et al.  How structural adaptability exists alongside HLA-A2 bias in the human αβ TCR repertoire , 2016, Proceedings of the National Academy of Sciences.

[24]  J. McCluskey,et al.  TCRα Genes Direct MHC Restriction in the Potent Human T Cell Response to a Class I-Bound Viral Epitope1 , 2006, The Journal of Immunology.

[25]  K. Garcia,et al.  Reconciling views on T cell receptor germline bias for MHC. , 2012, Trends in immunology.

[26]  J. Neefjes,et al.  Towards a systems understanding of MHC class I and MHC class II antigen presentation , 2011, Nature Reviews Immunology.

[27]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[28]  Mikhail Shugay,et al.  Distinctive properties of identical twins' TCR repertoires revealed by high-throughput sequencing , 2014, Proceedings of the National Academy of Sciences.

[29]  Michael Boehnke,et al.  LocusZoom: regional visualization of genome-wide association scan results , 2010, Bioinform..

[30]  P. Visscher,et al.  GCTA: a tool for genome-wide complex trait analysis. , 2011, American journal of human genetics.

[31]  P. Visscher,et al.  A Commentary on ‘Common SNPs Explain a Large Proportion of the Heritability for Human Height’ by Yang et al. (2010) , 2010, Twin Research and Human Genetics.

[32]  Benedict Seddon,et al.  Asymmetric thymocyte death underlies the CD4:CD8 T-cell ratio in the adaptive immune system , 2013, Proceedings of the National Academy of Sciences.

[33]  H. Mcdevitt,et al.  HL-A, immune-response genes, and disease. , 1974, Lancet.

[34]  Buhm Han,et al.  Imputing Amino Acid Polymorphisms in Human Leukocyte Antigens , 2013, PloS one.

[35]  Philippa Marrack,et al.  Evolutionarily conserved amino acids that control TCR-MHC interaction. , 2008, Annual review of immunology.

[36]  James McCluskey,et al.  Hard wiring of T cell receptor specificity for the major histocompatibility complex is underpinned by TCR adaptability , 2010, Proceedings of the National Academy of Sciences.

[37]  F. V. Laethem,et al.  Lck Availability during Thymic Selection Determines the Recognition Specificity of the T Cell Repertoire , 2013, Cell.

[38]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[39]  Neha R. Deshpande,et al.  Functional evidence for TCR-intrinsic specificity for MHCII , 2016, Proceedings of the National Academy of Sciences.

[40]  María Martín,et al.  UniProt: A hub for protein information , 2015 .

[41]  Robert M. Plenge,et al.  Five amino acids in three HLA proteins explain most of the association between MHC and seropositive rheumatoid arthritis , 2011, Nature Genetics.

[42]  L. Klein,et al.  Positive and negative selection of the T cell repertoire: what thymocytes see (and don't see) , 2014, Nature Reviews Immunology.

[43]  The Uniprot Consortium,et al.  UniProt: a hub for protein information , 2014, Nucleic Acids Res..

[44]  Lior Pachter,et al.  Sequence Analysis , 2020, Definitions.

[45]  T. J. Mitchell,et al.  Bayesian Variable Selection in Linear Regression , 1988 .

[46]  Jake K. Byrnes,et al.  Bayesian refinement of association signals for 14 loci in 3 common diseases , 2012, Nature Genetics.

[47]  J. S. Rao,et al.  Spike and Slab Gene Selection for Multigroup Microarray Data , 2005 .

[48]  Sylvia Richardson,et al.  Dissection of a Complex Disease Susceptibility Region Using a Bayesian Stochastic Search Approach to Fine Mapping , 2015, bioRxiv.

[49]  K. Tokunaga,et al.  Associations of human leukocyte antigens with autoimmune diseases: challenges in identifying the mechanism , 2015, Journal of Human Genetics.

[50]  L. K. Ely,et al.  The molecular basis of TCR germline bias for MHC is surprisingly simple , 2009, Nature Immunology.

[51]  Kenny Q. Ye,et al.  An integrated map of genetic variation from 1,092 human genomes , 2012, Nature.

[52]  Paul Theodor Pyl,et al.  HTSeq—a Python framework to work with high-throughput sequencing data , 2014, bioRxiv.

[53]  Bernard Malissen,et al.  What do TCR-pMHC crystal structures teach us about MHC restriction and alloreactivity? , 2003, Trends in immunology.

[54]  Pratip K. Chattopadhyay,et al.  Public clonotype usage identifies protective Gag-specific CD8+ T cell responses in SIV infection , 2009, The Journal of experimental medicine.

[55]  S. Raychaudhuri,et al.  Autoimmune diseases — connecting risk alleles with molecular traits of the immune system , 2016, Nature Reviews Genetics.

[56]  Vijay S. Pande,et al.  Exploiting a natural conformational switch to engineer an Interleukin-2 superkine , 2012, Nature.

[57]  K. Garcia,et al.  A closer look at TCR germline recognition. , 2012, Immunity.

[58]  J. Murray An old Twist in HLA-A: CDR3α Hook up at an R65-joint , 2015, Front. Immunol..

[59]  N. K. Jerne,et al.  The somatic generation of immune recognition , 1971, European journal of immunology.

[60]  Jennifer Maynard,et al.  Structural evidence for a germline-encoded T cell receptor–major histocompatibility complex interaction 'codon' , 2007, Nature Immunology.

[61]  Mark I. Greene,et al.  Control of MHC Restriction by TCR Vα CDR1 and CDR2 , 1996, Science.

[62]  Patrice Duroux,et al.  IMGT®, the international ImMunoGeneTics information system® 25 years on , 2014, Nucleic Acids Res..

[63]  P. D. de Bakker,et al.  Somatic Variation of T-Cell Receptor Genes Strongly Associate with HLA Class Restriction , 2015, PloS one.

[64]  P. Doherty,et al.  Structural determinants of T-cell receptor bias in immunity , 2006, Nature Reviews Immunology.

[65]  M. Carrington,et al.  Fine-Mapping the Genetic Association of the Major Histocompatibility Complex in Multiple Sclerosis: HLA and Non-HLA Effects , 2013, PLoS genetics.

[66]  F. V. Laethem,et al.  Deletion of CD4 and CD8 Coreceptors Permits Generation of αβT Cells that Recognize Antigens Independently of the MHC , 2007 .

[67]  P. Vantourout,et al.  Six-of-the-best: unique contributions of γδ T cells to immunology , 2013, Nature Reviews Immunology.

[68]  E. Adams,et al.  Coevolution of T‐cell receptors with MHC and non‐MHC ligands , 2015, Immunological reviews.

[69]  C. Carlson,et al.  Overlap and Effective Size of the Human CD8+ T Cell Receptor Repertoire , 2010, Science Translational Medicine.

[70]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .