Contemporaneous deposition of phyllosilicates and sulfates: Using Australian acidic saline lake deposits to describe geochemical variability on Mars

[1] Studies of the origin of the Martian sulfate and phyllosilicate deposits have led to the hypothesis that there was a marked, global-scale change in the Mars environment from circum-neutral pH aqueous alteration in the Noachian to an acidic evaporitic system in the late Noachian to Hesperian. However, terrestrial studies suggest that two different geochemical systems need not be invoked to explain such geochemical variation. Western Australian acidic playa lakes have large pH differences separated vertically and laterally by only a few tens of meters, demonstrating how highly variable chemistries can coexist over short distances in natural environments. We suggest diverse and variable Martian aqueous environments where the coetaneous formation of phyllosilicates and sulfates at the Australian sites are analogs for regions where phyllosilicates and sulfates coexist on Mars. In these systems, Fe and alkali earth phyllosilicates represent deep facies associated with upwelling neutral to alkaline groundwater, whereas aluminous phyllosilicates and sulfates represent near-surface evaporitic facies formed from more acidic brines.

[1]  M. Zuber,et al.  Meridiani Planum and the global hydrology of Mars , 2007, Nature.

[2]  Kenneth L. Tanaka Dust and Ice Deposition in the Martian Geologic Record , 2000 .

[3]  A. Banin,et al.  Acidic volatiles and the Mars soil , 1997 .

[4]  R. J. Reid,et al.  Mineralogic and compositional properties of Martian soil and dust: Results from Mars Pathfinder , 2000 .

[5]  Peter H. Schultz,et al.  Polar wandering of Mars , 1988 .

[6]  A. Mann Hydrogeochemistry and weathering on the Yilgarn Block, Western Australia—ferrolysis and heavy metals in continental brines , 1983 .

[7]  K. Benison,et al.  Acid saline lake systems give clues about past environments and the search for life on Mars , 2006 .

[8]  John F. Mustard,et al.  Orbital Identification of Carbonate-Bearing Rocks on Mars , 2008 .

[9]  F. Poulet,et al.  Early geochemical environment of Mars as determined from thermodynamics of phyllosilicates , 2007, Nature.

[10]  G. Neukum,et al.  Mineralogy of the Nili Fossae region with OMEGA/Mars Express data: 2. Aqueous alteration of the crust , 2007 .

[11]  B. Hong,et al.  Sedimentology of Acid Saline Lakes in Southern Western Australia: Newly Described Processes and Products of an Extreme Environment , 2007 .

[12]  J. Turner,et al.  Hydrochemistry on the yilgarn block, western Australia: Ferrolysis and mineralisation in acidic brines , 1991 .

[13]  K. Benison,et al.  Geochemical characteristics of naturally acid and alkaline saline lakes in southern Western Australia , 2009 .

[14]  J. Turner,et al.  Salt sources and water-rock interaction on the Yilgarn Block, Australia: isotopic and major element tracers , 1989 .

[15]  R. Clark,et al.  Phyllosilicate and sulfate‐hematite deposits within Miyamoto crater in southern Sinus Meridiani, Mars , 2008 .

[16]  R. E. Arvidson,et al.  Phyllosilicates on Mars and implications for early martian climate , 2005, Nature.

[17]  Donald M. Hunten,et al.  Possible oxidant sources in the atmosphere and surface of Mars , 1979, Journal of Molecular Evolution.

[18]  R. Burns Rates and mechanisms of chemical weathering of ferromagnesian silicate minerals on Mars , 1993 .

[19]  Jean-Pierre Bibring,et al.  Sulfates in Martian Layered Terrains: The OMEGA/Mars Express View , 2005, Science.

[20]  B. Clark,et al.  The salts of Mars , 1981 .

[21]  E. Shock,et al.  Hydrothermal hydration of Martian crust: illustration via geochemical model calculations. , 1997, Journal of geophysical research.

[22]  M. Malin,et al.  Sedimentary rocks of early Mars. , 2000, Science.

[23]  Jean-Pierre Bibring,et al.  Sulfates in the North Polar Region of Mars Detected by OMEGA/Mars Express , 2005, Science.

[24]  R. Anand,et al.  Regolith geology of the Yilgarn Craton, Western Australia: Implications for exploration , 2002 .

[25]  K. Benison,et al.  Modern and ancient extremely acid saline deposits: terrestrial analogs for martian environments? , 2003, Astrobiology.

[26]  H. Newsom,et al.  Mixed Hydrothermal Fluids and the Origin of the Martian Soil: A New Quantitative Model , 1999 .

[27]  M. Elias,et al.  Geology, mineralogy, and chemistry of lateritic nickel-cobalt deposits near Kalgoorlie, Western Australia , 1981 .

[28]  R. Clark,et al.  Detection of crystalline hematite mineralization on Mars by the Thermal Emission Spectrometer: Evide , 2000 .

[29]  R. Clark,et al.  Clay and Sulfate-bearing Rocks in a Stratigraphic Sequence in Gale Crater , 2009 .

[30]  Angelo Pio Rossi,et al.  Large-scale spring deposits on Mars? , 2008 .

[31]  J. K. Crowley,et al.  Modeling aluminum–silicon chemistries and application to Australian acidic playa lakes as analogues for Mars , 2009 .

[32]  T. Encrenaz,et al.  Global Mineralogical and Aqueous Mars History Derived from OMEGA/Mars Express Data , 2006, Science.

[33]  M. M. Osterloo,et al.  Chloride-Bearing Materials in the Southern Highlands of Mars , 2008, Science.

[34]  T. Encrenaz,et al.  Mars Surface Diversity as Revealed by the OMEGA/Mars Express Observations , 2005, Science.

[35]  R. Morris,et al.  Mineralogy of Terra Meridiani and western Arabia Terra from OMEGA/MEx and implications for their formation , 2008 .

[36]  Jeffrey R. Johnson,et al.  In Situ Evidence for an Ancient Aqueous Environment at Meridiani Planum, Mars , 2004, Science.

[37]  D. Gray Hydrogeochemistry in the Yilgarn Craton , 2001, Geochemistry: Exploration, Environment, Analysis.

[38]  R L Mancinelli,et al.  Reflectance spectroscopy of ferric sulfate-bearing montmorillonites as Mars soil analog materials. , 1995, Icarus.

[39]  J. K. Crowley,et al.  Discovery of the Acid-Sulfate Mineral Alunite in Terra Sirenum, Mars, Using MRO CRISM: Possible Evidence for Acid-Saline Lacustrine Deposits? , 2008 .

[40]  M. Malin,et al.  Polar Wandering on Mars? , 1973, Science.

[41]  Rock Stratigraphy in Gale Crater, Mars , 2001 .

[42]  R. Arvidson,et al.  Explosive volcanism in the Tharsis region: Global evidence in the Martian geologic record , 2003 .