Correction: Substrate Selection for Fundamental Studies of Electrocatalysts and Photoelectrodes: Inert Potential Windows in Acidic, Neutral, and Basic Electrolyte

The selection of an appropriate substrate is an important initial step for many studies of electrochemically active materials. In order to help researchers with the substrate selection process, we employ a consistent experimental methodology to evaluate the electrochemical reactivity and stability of seven potential substrate materials for electrocatalyst and photoelectrode evaluation. Using cyclic voltammetry with a progressively increased scan range, we characterize three transparent conducting oxides (indium tin oxide, fluorine-doped tin oxide, and aluminum-doped zinc oxide) and four opaque conductors (gold, stainless steel 304, glassy carbon, and highly oriented pyrolytic graphite) in three different electrolytes (sulfuric acid, sodium acetate, and sodium hydroxide). We determine the inert potential window for each substrate/electrolyte combination and make recommendations about which materials may be most suitable for application under different experimental conditions. Furthermore, the testing methodology provides a framework for other researchers to evaluate and report the baseline activity of other substrates of interest to the broader community.

[1]  J. M. Olivares-Ramírez,et al.  Studies on the hydrogen evolution reaction on different stainless steels , 2007 .

[2]  R. Engstrom Electrochemical pretreatment of glassy carbon electrodes , 1982 .

[3]  M. Orlik,et al.  Electrochemistry of Silver , 2006 .

[4]  H. Strehblow,et al.  Combined Surface Analytical and Electrochemical Study of the Formation of Passive Layers on Fe/Cr Alloys in 0.5 M H2SO4. , 1995 .

[5]  T. Jaramillo,et al.  Designing Active and Stable Silicon Photocathodes for Solar Hydrogen Production Using Molybdenum Sulfide Nanomaterials , 2014 .

[6]  Xiaobo Ji,et al.  Edge plane sites on highly ordered pyrolytic graphite as templates for making palladium nanowires via electrochemical decoration. , 2006, The journal of physical chemistry. B.

[7]  E. Wang,et al.  In situ electrochemical scanning tunnelling microscopy investigation of structure for horseradish peroxidase and its electricatalytic property , 1996 .

[8]  E. Matveeva Electrochemistry of the Indium-Tin Oxide Electrode in 1 M NaOH Electrolyte , 2005 .

[9]  J. Nørskov,et al.  Why gold is the noblest of all the metals , 1995, Nature.

[10]  Aleksandar Dekanski,et al.  Glassy carbon electrodes: I. Characterization and electrochemical activation , 2001 .

[11]  Petr Vanýsek,et al.  ELECTROCHEMICAL SERIES , 2010 .

[12]  R. McCreery,et al.  Activation of highly ordered pyrolytic graphite for heterogeneous electron transfer: relationship between electrochemical performance and carbon microstructure , 1989 .

[13]  M. Pourbaix Atlas of Electrochemical Equilibria in Aqueous Solutions , 1974 .

[14]  N. Alonso‐Vante,et al.  Substrate effect on oxygen reduction electrocatalysis , 2010 .

[15]  T. Jaramillo,et al.  Core-shell MoO3-MoS2 nanowires for hydrogen evolution: a functional design for electrocatalytic materials. , 2011, Nano letters.

[16]  C. G. Zoski Handbook of Electrochemistry , 2006 .

[17]  E. Steckhan,et al.  Influence of the supporting electrolyte and the pH on the electrooxidative activation of glassy carbon electrodes , 1992 .

[18]  S. Bent,et al.  Growth of Pt nanowires by atomic layer deposition on highly ordered pyrolytic graphite. , 2013, Nano letters.

[19]  H. Dinh,et al.  Photoelectrochemical Water Splitting: Standards, Experimental Methods, and Protocols , 2013 .

[20]  Jingli Luo,et al.  Hydrogen-Facilitated Anodic Dissolution of Austenitic Stainless Steels , 1998 .

[21]  D. J. Rutstrom,et al.  Pretreatment and validation procedure for glassy carbon voltammetric indicator electrodes , 1985 .

[22]  D. Draẑić,et al.  Corrosion potential of 304 stainless steel in sulfuric acid , 2006 .

[23]  T. Minami Transparent conducting oxide semiconductors for transparent electrodes , 2005 .

[24]  T. Kuwana,et al.  Electrochemical and Surface Characteristics of Tin Oxide and Indium Oxide Electrodes , 1976 .

[25]  S. Barnartt The Oxygen‐Evolution Reaction at Gold Anodes II . Overpotential Measurements and Reaction Mechanism in Sulfuric Acid Solutions , 1959 .

[26]  A. Klein Transparent Conducting Oxides: Electronic Structure–Property Relationship from Photoelectron Spectroscopy with in situ Sample Preparation , 2012 .

[27]  V. Cunnane,et al.  Unusual Postmonolayer Oxide Behavior of Gold Electrodes in Base , 1992 .

[28]  K. Chopra,et al.  Transparent conductors—A status review , 1983 .

[29]  R. Qvarfort,et al.  Transpassive Corrosion of High Alloy Stainless Steels and Nickel Base Alloys , 2002 .

[30]  R. Winston Revie,et al.  Corrosion and corrosion control : an introduction to corrosion science and engineering , 2008 .

[31]  Peng Miao,et al.  Theoretical Background of Electrochemical Analysis , 2013 .

[32]  SHIGEHIKO YAMADA,et al.  Some Physical Properties of Glassy Carbon , 1962, Nature.

[33]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .

[34]  H. Chen,et al.  Study on Hydrogen Evolution Reaction at a Graphite Electrode in the All-Vanadium Redox Flow Battery , 2012, International Journal of Electrochemical Science.

[35]  A. Kraft,et al.  Changes in electrochemical and photoelectrochemical properties of tin-doped indium oxide layers after strong anodic polarization , 1994 .

[36]  L. Burke,et al.  A study of the electrocatalytic behaviour of gold in acid using ac voltammetry , 1992 .

[37]  T. Kuwana,et al.  Activation and deactivation of glassy carbon electrodes , 1985 .

[38]  R. Goyal,et al.  A comparison of edge- and basal-plane pyrolytic graphite electrodes towards the sensitive determination of hydrocortisone. , 2010, Talanta.

[39]  B. D. Lichter,et al.  The Electrochemical Oxidation of Gold in 0.6 M NaCl and 0.3 M Na2 SO 4 Solutions , 1997 .

[40]  Q. Qiao,et al.  A comparison of fluorine tin oxide and indium tin oxide as the transparent electrode for P3OT/TiO2 solar cells , 2006 .

[41]  D. Landolt,et al.  Passive films on stainless steels—chemistry, structure and growth , 2003 .

[42]  J. Herrero,et al.  Electrochemical stability of indium tin oxide thin films , 1992 .

[43]  T. Jaramillo,et al.  Hydrogen Evolution on Supported Incomplete Cubane-type (Mo3S4) 4+ Electrocatalysts , 2008 .

[44]  G. Jellison,et al.  Photoelectrochemical Stability and Alteration Products of n-Type Single-Crystal ZnO Photoanodes , 2011 .

[45]  Wei Gao,et al.  Potential dissolution and photo-dissolution of ZnO thin films. , 2010, Journal of hazardous materials.

[46]  A. Bond,et al.  A Survey of Electrodes used for Voltammetric Analysis , 2010 .

[47]  M. McDermott,et al.  Preparation of reproducible glassy carbon electrodes by removal of polishing impurities , 2003 .

[48]  V. Yegnaraman,et al.  Electrochemical instability of indium tin oxide (ITO) glass in acidic pH range during cathodic polarization , 2008 .

[49]  R. Gordon Criteria for Choosing Transparent Conductors , 2000 .

[50]  H. Zittel,et al.  A GLASSY-CARBON ELECTRODE FOR VOLTAMMETRY , 1965 .

[51]  W. Hao Electrochemical Behavior of ITO Films during Anodic and Cathodic Polarization in Sodium Hydroxide Solutions , 2009 .

[52]  Thomas F. Jaramillo,et al.  Addressing the terawatt challenge: scalability in the supply of chemical elements for renewable energy , 2012 .

[53]  Hardcover,et al.  Carbon: Electrochemical and Physicochemical Properties , 1988 .

[54]  W. Hosford Iron and Steel , 2012 .

[55]  R. Engstrom,et al.  Characterization of electrochemically pretreated glassy carbon electrodes , 1984 .

[56]  M. Orlik,et al.  Electrochemistry of Gold*Dedicated to the memory of Professor Ralph N. Adams, a respected and unforgettable electrochemist and man , 2006 .

[57]  H. Gasteiger,et al.  Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs , 2005 .

[58]  S. Michalkiewicz,et al.  Potential windows accessible to platinum and carbon electrodes in acetic acid and its mixtures with ethyl acetate , 2004 .

[59]  D. Pang,et al.  Surface structure-related electrochemical behaviors of glassy carbon electrodes , 2008 .

[60]  Andreas Stadler,et al.  Transparent Conducting Oxides—An Up-To-Date Overview , 2012, Materials.

[61]  V. Jovanović,et al.  Glassy carbon electrodes: II. Modification by immersion in AgNO3 , 2001 .

[62]  M. Zhang,et al.  Surface manipulation for improving the sensitivity and selectivity of glassy carbon electrodes by electrochemical treatment. , 2009, Biosensors & bioelectronics.

[63]  Peng Miao,et al.  Electrochemical Analysis of Proteins and Cells , 2012 .

[64]  Shiro Haruyama,et al.  The Electrochemical Oxidation and Reduction of Gold , 1971 .

[65]  F. Besenbacher,et al.  Cluster-support interactions and morphology of MoS2 nanoclusters in a graphite-supported hydrotreating model catalyst. , 2006, Journal of the American Chemical Society.

[66]  I. Watanabe,et al.  ACTIVATION OF A GOLD ELECTRODE BY ELECTROCHEMICAL OXIDATION-REDUCTION PRETREATMENT IN HYDROCHLORIC ACID , 1991 .

[67]  Jiang Cheng Electrochemical Behavior of ITO Films during Anodic and Cathodic Polarization in Sodium Hydroxide Solutions , 2009 .

[68]  A. Bard,et al.  Ellipsometric, electrochemical, and elemental characterization of the surface phase produced on glassy carbon electrodes by electrochemical activation , 1988 .

[69]  W. E. Van Der Linden,et al.  Glassy carbon as electrode material in electro- analytical chemistry , 1980 .

[70]  H. Strehblow,et al.  A combined surface analytical and electrochemical study of the formation of passive layers on alloys in 0.5 M H2SO4 , 1995 .

[71]  C. J. Adkins,et al.  Intrinsic performance limits in transparent conducting oxides , 1992 .

[72]  Hadis Morkoç,et al.  Transparent conducting oxides for electrode applications in light emitting and absorbing devices , 2010 .

[73]  D. Dugger,et al.  Solid-state analytical characterization of electrochemically modified glassy carbon electrodes , 1991 .

[74]  K. Juodkazis XPS studies on the gold oxide surface layer formation , 2000 .

[75]  M. Jakšić,et al.  Electrochemical behaviour of palladium in acidic and alkaline solutions of heavy and regular water , 1993 .

[76]  R. Kruk,et al.  Formation of metallic indium-tin phase from indium-tin-oxide nanoparticles under reducing conditions and its influence on the electrical properties , 2008 .

[77]  R. R. Moore,et al.  Basal plane pyrolytic graphite modified electrodes: comparison of carbon nanotubes and graphite powder as electrocatalysts. , 2004, Analytical chemistry.

[78]  M. Cai,et al.  Spectroelectrochemical Studies on Dissolution and Passivation of Zinc Electrodes in Alkaline Solutions , 1996 .

[79]  J. Hoare A Cyclic Voltammetric Study of the Gold‐Oxygen System , 1984 .

[80]  R. Murray,et al.  Imaging the incipient electrochemical oxidation of highly oriented pyrolytic graphite , 1993 .

[81]  Andrew Wilkinson Compendium of Chemical Terminology , 1997 .

[82]  M. Bowers,et al.  Electrochemical behavior of glassy carbon electrodes modified by electrochemical oxidation , 1991 .

[83]  Tania A. Sasaki,et al.  Electrochemical Pretreatment of Carbon Electrodes as a Function of Potential, pH, and Time , 1995 .

[84]  Junliang Zhang,et al.  Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates. , 2005, Angewandte Chemie.

[85]  G. Kamau Surface preparation of glassy carbon electrodes , 1988 .

[86]  M. D. Rooij,et al.  Electrochemical Methods: Fundamentals and Applications , 2003 .

[87]  R. Mathies,et al.  Identification of hydroperoxy species as reaction intermediates in the electrochemical evolution of oxygen on gold. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[88]  D. Ginley,et al.  Handbook of transparent conductors , 2011 .

[89]  J. Rusling,et al.  Electrochemical and electron spectroscopic studies of highly polished glassy carbon electrodes. , 1985, Analytical chemistry.

[90]  Ching An Huang,et al.  The electrochemical behavior of tin-doped indium oxide during reduction in 0.3 M hydrochloric acid , 2003 .

[91]  E. Wang,et al.  Effects of anodic oxidation on the surface structure of highly oriented pyrolytic graphite revealed by in situ electrochemical scanning tunnelling microscopy in H2SO4 solution , 1995 .