CONNECTION BETWEEN THE ACCRETION DISK AND JET IN THE RADIO GALAXY 3C 111

We present the results of extensive multi-frequency monitoring of the radio galaxy 3C 111 between 2004 and 2010 at X-ray (2.4-10 keV), optical (R band), and radio (14.5, 37, and 230 GHz) wave bands, as well as multi-epoch imaging with the Very Long Baseline Array (VLBA) at 43 GHz. Over the six years of observation, significant dips in the X-ray light curve are followed by ejections of bright superluminal knots in the VLBA images. This shows a clear connection between the radiative state near the black hole, where the X-rays are produced, and events in the jet. The X-ray continuum flux and Fe line intensity are strongly correlated, with a time lag shorter than 90 days and consistent with zero. This implies that the Fe line is generated within 90 lt-day of the source of the X-ray continuum. The power spectral density function of X-ray variations contains a break, with a steeper slope at shorter timescales. The break timescale of 13{sup +12}{sub -6} days is commensurate with scaling according to the mass of the central black hole based on observations of Seyfert galaxies and black hole X-ray binaries (BHXRBs). The data are consistent with the standard paradigm, in which themore » X-rays are predominantly produced by inverse Compton scattering of thermal optical/UV seed photons from the accretion disk by a distribution of hot electrons-the corona-situated near the disk. Most of the optical emission is generated in the accretion disk due to reprocessing of the X-ray emission. The relationships that we have uncovered between the accretion disk and the jet in 3C 111, as well as in the Fanaroff-Riley class I radio galaxy 3C 120 in a previous paper, support the paradigm that active galactic nuclei and Galactic BHXRBs are fundamentally similar, with characteristic time and size scales proportional to the mass of the central black hole.« less

[1]  I. Papadakis,et al.  Long-Term Spectral Variability of Seyfert Galaxies from Rossi X-Ray Timing Explorer Color-Flux Diagrams , 2002, astro-ph/0202498.

[2]  A. Treves,et al.  Geometry and inclination of the broad-line region in blazars , 2010, 1011.5879.

[3]  M. S. Oey,et al.  Atlas of quasar energy distributions , 1994 .

[4]  A. Markowitz,et al.  SPECTRAL SURVEY OF X-RAY BRIGHT ACTIVE GALACTIC NUCLEI FROM THE ROSSI X-RAY TIMING EXPLORER , 2011, 1101.1545.

[5]  H. Berk,et al.  Magnetically driven jets and winds , 1991 .

[6]  R. Blandford,et al.  Hydromagnetic flows from accretion discs and the production of radio jets , 1982 .

[7]  Wei Cui,et al.  Spectral Transitions in Cygnus X-1 and Other Black Hole X-Ray Binaries , 1997, astro-ph/9711167.

[8]  M. Eracleous,et al.  A Simultaneous RXTE and XMM-Newton Observation of the Broad-Line Radio Galaxy 3C 111 , 2004, astro-ph/0412537.

[9]  J. Wardle,et al.  The linear polarization of quasi-stellar radio sources at 3.71 and 11.1 centimeters. , 1974 .

[10]  D. Whittet,et al.  Interstellar Extinction, Polarization, and Grain Alignment in the High-Latitude Molecular Cloud toward HD 210121 , 1996 .

[11]  Paul S. Smith,et al.  Multiwaveband Polarimetric Observations of 15 Active Galactic Nuclei at High Frequencies: Correlated Polarization Behavior , 2007, 0705.4273.

[12]  M. Lister,et al.  Observational evidence for the accretion-disk origin for a radio jet in an active galaxy , 2002, Nature.

[13]  Paul S. Smith,et al.  Polarimetric Observations of 15 Active Galactic Nuclei at High Frequencies: Jet Kinematics from Bimonthly Monitoring with the Very Long Baseline Array , 2005, astro-ph/0502501.

[14]  R. Narayan Low-Luminosity Accretion in Black Hole X-Ray Binaries and Active Galactic Nuclei , 2004, astro-ph/0411385.

[15]  R. Perley,et al.  3C 111 : a luminous radio galaxy with a highly collimated jet. , 1984 .

[16]  Thomas J. Maccarone,et al.  Do X-ray binary spectral state transition luminosities vary? , 2003, astro-ph/0308036.

[17]  P. E. Hodge,et al.  Spectra and linear polarizations of extragalactic variable sources at centimeter wavelengths , 1985 .

[18]  S. Markoff,et al.  Going with the Flow: Can the Base of Jets Subsume the Role of Compact Accretion Disk Coronae? , 2005, astro-ph/0509028.

[19]  Is 3C 111, an apparently normal radio galaxy, the counterpart of 3EG J0416+3650? , 2004, astro-ph/0409534.

[20]  Ari Mujunen,et al.  Fifteen years monitoring of extragalactic radio sources at 22 , 1998 .

[21]  A. R. King,et al.  The Disk-Jet Connection in Microquasars and Active Galactic Nuclei , 2003, astro-ph/0304367.

[22]  T. Belloni,et al.  Jets from black hole X-ray binaries: testing, refining and extending empirical models for the coupling to X-rays , 2009, 0903.5166.

[23]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[24]  A. Markowitz,et al.  A COMPREHENSIVE X-RAY SPECTRAL ANALYSIS OF THE SEYFERT 1.5 NGC 3227 , 2008, 0810.1249.

[25]  Paule Sonnentrucker,et al.  A Far Ultraviolet Spectroscopic Explorer Survey of Interstellar Molecular Hydrogen in Translucent Clouds , 2002 .

[26]  L. Ho,et al.  ESTIMATING BLACK HOLE MASSES IN ACTIVE GALAXIES USING THE H α EMISSION LINE , 2005 .

[27]  Completion of a Survey and Detailed Study of Double-peaked Emission Lines in Radio-loud Active Galactic Nuclei , 2003, astro-ph/0309149.

[28]  R. F. Mushotzky,et al.  An X-Ray Spectral Survey of Radio-loud Active Galactic Nuclei with ASCA , 1999, astro-ph/9905365.

[29]  R. University,et al.  A transition in the accretion properties of radio-loud active nuclei , 2004, astro-ph/0403272.

[30]  E. Striani,et al.  FERMI LARGE AREA TELESCOPE FIRST SOURCE CATALOG , 2010 .

[31]  Ronald A. Remillard,et al.  X-Ray Properties of Black-Hole Binaries , 2006, astro-ph/0606352.

[32]  M. Salvato,et al.  The X-ray to optical-UV luminosity ratio of X-ray selected type 1 AGN in XMM-COSMOS , 2009, 0912.4166.

[33]  Ucla,et al.  Evidence for Rapid Iron Kα Line Flux Variability in MCG –6-30-15 , 2000, astro-ph/0010274.

[34]  Michael A. Nowak,et al.  Rossi X-Ray Timing Explorer Observation of Cygnus X-1. II. Timing Analysis , 1999 .

[35]  Bradley M. Peterson,et al.  On Uncertainties in Cross‐Correlation Lags and the Reality of Wavelength‐dependent Continuum Lags in Active Galactic Nuclei , 1998, astro-ph/9802103.

[36]  Kirpal Nandra,et al.  ASCA Observations of Seyfert 1 Galaxies. I. Data Analysis, Imaging, and Timing , 1997 .

[37]  A. Marscher,et al.  Observational Probes of the Small-Scale Structure of Molecular Clouds , 1995 .

[38]  R Edelson,et al.  The Discrete Correlation Function: a New Method for Analyzing Unevenly Sampled Variability Data , 1988 .

[39]  P. Uttley,et al.  Active galactic nuclei as scaled-up Galactic black holes , 2006, Nature.

[40]  Cambridge,et al.  The continuum variability of MCG–6-30-15: a detailed analysis of the long 1999 ASCA observation , 2002, astro-ph/0202432.

[41]  M. J. Page,et al.  Combined long and short time-scale X-ray variability of NGC 4051 with RXTE and XMM-Newton , 2004 .

[42]  A. Marscher,et al.  Detection of AU-Scale Structure in Molecular Clouds , 1993 .

[43]  X-ray Power Density Spectrum of the Narrow-Line Seyfert 1 Galaxy Arakelian 564 , 2001, astro-ph/0101542.

[44]  H. R. Miller,et al.  MULTIWAVELENGTH VARIABILITY OF THE BROAD LINE RADIO GALAXY 3C 120 , 2009, 0902.2927.

[45]  A. Markowitz THE X-RAY POWER SPECTRAL DENSITY FUNCTION OF THE SEYFERT ACTIVE GALACTIC NUCLEUS NGC 7469 , 2010, 1010.3058.

[46]  P. Uttley,et al.  X-Ray Fluctuation Power Spectral Densities of Seyfert 1 Galaxies , 2003, astro-ph/0303273.

[47]  Taylor S. Chonis,et al.  DISK–JET CONNECTION IN THE RADIO GALAXY 3C 120 , 2009, 0909.2051.

[48]  M. Eracleous,et al.  Hard X-Ray Spectra of Broad-Line Radio Galaxies from the Rossi X-Ray Timing Explorer , 2000, astro-ph/0002265.

[49]  Ken Pounds,et al.  X-Ray spectral variability and rapid variability of the soft X-ray spectrum Seyfert 1 galaxies Arakelian 564 and Ton S180 , 2001 .

[50]  H. Falcke,et al.  Subrelativistic Radio Jets and Parsec-Scale Absorption in Two Seyfert Galaxies , 1999, astro-ph/9903378.

[52]  N. Vlahakis,et al.  Magnetic Driving of Relativistic Outflows in Active Galactic Nuclei. I. Interpretation of Parsec-Scale Accelerations , 2003, astro-ph/0310747.

[53]  Bradley M. Peterson,et al.  COMMENTS ON CROSS-CORRELATION METHODOLOGY IN VARIABILITY STUDIES OF ACTIVE GALACTIC NUCLEI , 1994 .

[54]  B. Peterson,et al.  The Accuracy of Cross-Correlation Estimates of Quasar Emission-Line Region Sizes , 1987 .

[55]  K. Nandra,et al.  A Cutoff in the X-Ray Fluctuation Power Density Spectrum of the Seyfert 1 Galaxy NGC 3516 , 1998, astro-ph/9810481.

[56]  Cambridge,et al.  Long-Term X-Ray Spectral Variability in Seyfert 1 Galaxies , 2003, astro-ph/0308312.

[57]  I. M. McHardy,et al.  Measuring the broad-band power spectra of active galactic nuclei with RXTE , 2002 .

[58]  E. Ros,et al.  The Trails of Superluminal Jet Components in 3C 111 , 2008, 0801.0617.

[59]  D. Meier,et al.  Magnetohydrodynamic production of relativistic jets. , 2001, Science.

[60]  M. Elvis,et al.  THE X-RAY ENERGY DEPENDENCE OF THE RELATION BETWEEN OPTICAL AND X-RAY EMISSION IN QUASARS , 2009, 0911.0474.

[61]  H. R. Miller,et al.  Correlated Multi-Wave Band Variability in the Blazar 3C 279 from 1996 to 2007 , 2008, 0808.2194.

[62]  A. Fabian,et al.  X-ray spectroscopy of the broad-line radio galaxy 3C 111 , 1998 .

[63]  Walter Kieran Gear,et al.  Models for high-frequency radio outbursts in extragalactic sources, with application to the early 1983 millimeter-to-infrared flare of 3C 273. , 1985 .

[65]  J. Ables,et al.  Simultaneous observations of pulsar intensity variations at Parkes and Ootacamund. , 1974 .

[66]  G. Ghisellini,et al.  A MODEL FOR THE X-RAY AND ULTRAVIOLET EMISSION FROM SEYFERT GALAXIES AND GALACTIC BLACK HOLES , 1994, astro-ph/9405059.

[67]  M. Malkan The ultraviolet excess of luminous quasars. II: Evidence for massive accretion disks , 1983 .

[68]  T. Belloni,et al.  A Unified Model for Black Hole X-Ray Binary Jets? , 2004, astro-ph/0506469.

[69]  Determining Central Black Hole Masses in Distant Active Galaxies and Quasars. II. Improved Optical and UV Scaling Relationships , 2006, astro-ph/0601303.

[70]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[71]  A. Marscher,et al.  Hydrodynamical Models of Superluminal Sources , 1997 .

[72]  M. Begelman The acceleration and collimation of jets. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[73]  J. Riley,et al.  The Morphology of Extragalactic Radio Sources of High and Low Luminosity , 1974 .

[74]  J. Chiang,et al.  THE FIRST FERMI MULTIFREQUENCY CAMPAIGN ON BL LACERTAE: CHARACTERIZING THE LOW-ACTIVITY STATE OF THE EPONYMOUS BLAZAR , 2011, 1101.5905.

[75]  Gamma-Ray Emission from the Broad-Line Radio Galaxy 3C 111 , 2008, 0808.1740.

[76]  A. Marecki,et al.  The transition from quasar radio-loud to radio-quiet state in the framework of the black hole scalability hypothesis , 2010, 1010.0651.