Dimension reduction method for ODE fluid models

We develop a new dimension reduction method for large size systems of ordinary differential equations (ODEs) obtained from a discretization of partial differential equations of viscous single and multiphase fluid flow. The method is also applicable to other large-size classical particle systems with negligibly small variations of particle concentration. We propose a new computational closure for mesoscale balance equations based on numerical iterative deconvolution. To illustrate the computational advantages of the proposed reduction method, we use it to solve a system of smoothed particle hydrodynamic ODEs describing single-phase and two-phase layered Poiseuille flows driven by uniform and periodic (in space) body forces. For the single-phase Poiseuille flow driven by the uniform force, the coarse solution was obtained with the zero-order deconvolution. For the single-phase flow driven by the periodic body force and for the two-phase flows, the higher-order (the first- and second-order) deconvolutions were necessary to obtain a sufficiently accurate solution.

[1]  Grigorios A. Pavliotis,et al.  Multiscale Methods: Averaging and Homogenization , 2008 .

[2]  M. Hanke Regularization with differential operators : an iterative approach , 1992 .

[3]  W. Noll,et al.  Die Herleitung der Grundgleichungen der Thermomechanik der Kontinua aus der Statistischen Mechanik , 1955 .

[4]  Timothy D. Scheibe,et al.  Mixing‐induced precipitation: Experimental study and multiscale numerical analysis , 2008 .

[5]  M. M. Lavrentʹev,et al.  Ill-Posed Problems of Mathematical Physics and Analysis , 1986 .

[6]  V. Zhikov,et al.  Homogenization of Differential Operators and Integral Functionals , 1994 .

[7]  H. Engl,et al.  Regularization of Inverse Problems , 1996 .

[8]  Daniel M. Tartakovsky,et al.  On breakdown of macroscopic models of mixing-controlled heterogeneous reactions in porous media , 2009 .

[9]  Ioannis G. Kevrekidis,et al.  Constraint-defined manifolds: A legacy code approach to low-dimensional computation , 2005 .

[10]  Daniel M Tartakovsky,et al.  Stochastic langevin model for flow and transport in porous media. , 2008, Physical review letters.

[11]  A. Ian Murdoch,et al.  A Critique of Atomistic Definitions of the Stress Tensor , 2007 .

[12]  S. Kindermann,et al.  On regularization methods based on dynamic programming techniques , 2007, ArXiv.

[13]  Robert Zwanzig,et al.  Collision of a Gas Atom with a Cold Surface , 1960 .

[14]  F. Natterer Error bounds for tikhonov regularization in hilbert scales , 1984 .

[15]  L. Rossi,et al.  Investigation of wall normal electromagnetic actuator for seawater flow control , 2002 .

[16]  P. Hansen Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion , 1987 .

[17]  Andrew J. Majda,et al.  Stochastic Mode Reduction for the Immersed Boundary Method , 2004, SIAM J. Appl. Math..

[18]  Alexander Pankov,et al.  G-Convergence and Homogenization of Nonlinear Partial Differential Operators , 1997 .

[19]  P. Meakin,et al.  Pore scale modeling of immiscible and miscible fluid flows using smoothed particle hydrodynamics , 2006 .

[20]  Timothy D. Scheibe,et al.  EFFECTS OF INCOMPLETE MIXING ON MULTICOMPONENT REACTIVE TRANSPORT , 2009 .

[21]  Alexandros Sopasakis,et al.  Error Analysis of Coarse-Graining for Stochastic Lattice Dynamics , 2006, SIAM J. Numer. Anal..

[22]  Ioannis G. Kevrekidis,et al.  Projective Methods for Stiff Differential Equations: Problems with Gaps in Their Eigenvalue Spectrum , 2002, SIAM J. Sci. Comput..

[23]  Ioannis G. Kevrekidis,et al.  Projecting to a Slow Manifold: Singularly Perturbed Systems and Legacy Codes , 2005, SIAM J. Appl. Dyn. Syst..

[24]  J. Morris,et al.  Modeling Low Reynolds Number Incompressible Flows Using SPH , 1997 .

[25]  Alexandre J. Chorin,et al.  Prediction from Partial Data, Renormalization, and Averaging , 2006, J. Sci. Comput..

[26]  Kim F. Ferris,et al.  Lagrangian particle model for multiphase flows , 2009, Comput. Phys. Commun..

[27]  L. Landweber An iteration formula for Fredholm integral equations of the first kind , 1951 .

[28]  A. Neubauer An a posteriori parameter choice for Tikhonov regularization in the presence of modeling error , 1988 .

[29]  C. W. Groetsch,et al.  The theory of Tikhonov regularization for Fredholm equations of the first kind , 1984 .

[30]  Heinz W. Engl,et al.  On the choice of the regularization parameter for iterated Tikhonov regularization of ill-posed problems , 1987 .

[31]  S. Whitaker The method of volume averaging , 1998 .

[32]  Nikolaus A. Adams,et al.  Direct modelling of subgrid scales of turbulence in large eddy simulations , 2002 .

[33]  Andrew J. Majda,et al.  Coarse-grained stochastic processes and Monte Carlo simulations in lattice systems , 2003 .

[34]  M. Hanke Accelerated Landweber iterations for the solution of ill-posed equations , 1991 .

[35]  V. A. Morozov,et al.  Methods for Solving Incorrectly Posed Problems , 1984 .

[36]  A. Majda,et al.  Coarse-grained stochastic processes for microscopic lattice systems , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[37]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .

[38]  Anneliese Defranceschi,et al.  Homogenization of Multiple Integrals , 1999 .

[39]  H. Mori Transport, Collective Motion, and Brownian Motion , 1965 .

[40]  A. Kirsch An Introduction to the Mathematical Theory of Inverse Problems , 1996, Applied Mathematical Sciences.

[41]  R. Hardy,et al.  Formulas for determining local properties in molecular‐dynamics simulations: Shock waves , 1982 .

[42]  Alexandre J. Chorin,et al.  Optimal prediction with memory , 2002 .

[43]  Alexandre M. Tartakovsky,et al.  Simulation of Unsaturated Flow in Complex Fractures Using Smoothed Particle Hydrodynamics , 2005 .

[44]  Zuhair Nashed,et al.  A Modified Tikhonov Regularization for Linear Operator Equations , 2005 .

[45]  Leo P. Kadanoff,et al.  Teaching the Renormalization Group. , 1978 .

[46]  Nikolaus A. Adams,et al.  A Subgrid-Scale Deconvolution Approach for Shock Capturing , 2002 .

[47]  L. Berselli,et al.  Mathematics of Large Eddy Simulation of Turbulent Flows , 2005 .

[48]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[49]  E. C. Childs Dynamics of fluids in Porous Media , 1973 .

[50]  Dick Bedeaux,et al.  Continuum equations of balance via weighted averages of microscopic quantities , 1994, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[51]  Petr Plechác,et al.  Numerical and Statistical Methods for the Coarse-Graining of Many-Particle Stochastic Systems , 2008, J. Sci. Comput..

[52]  Andreas G. Boudouvis,et al.  Projective and coarse projective integration for problems with continuous symmetries , 2007, J. Comput. Phys..