Kalium channelrhodopsins are natural light-gated potassium channels that mediate optogenetic inhibition

[1]  H. Adesnik,et al.  Cryo-EM structures of the channelrhodopsin ChRmine in lipid nanodiscs , 2021, Nature Communications.

[2]  Joseph M. Paggi,et al.  Structural basis for channel conduction in the pump-like channelrhodopsin ChRmine , 2021, Cell.

[3]  H. Adesnik,et al.  Probing neural codes with two-photon holographic optogenetics , 2021, Nature Neuroscience.

[4]  K. Gerwert,et al.  Time-resolved spectroscopic and electrophysiological data reveal insights in the gating mechanism of anion channelrhodopsin , 2021, Communications biology.

[5]  P. Bork,et al.  Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation , 2021, Nucleic Acids Res..

[6]  J. Spudich,et al.  Cation and Anion Channelrhodopsins: Sequence Motifs and Taxonomic Distribution , 2021, bioRxiv.

[7]  B. L. de Groot,et al.  The persistent question of potassium channel permeation mechanisms. , 2021, Journal of molecular biology.

[8]  J. Spudich,et al.  RubyACRs, non-algal anion channelrhodopsins with highly red-shifted absorption , 2020, bioRxiv.

[9]  J. Spudich,et al.  Conductance Mechanisms of Rapidly Desensitizing Cation Channelrhodopsins from Cryptophyte Algae , 2020, mBio.

[10]  H. Kandori Biophysics of rhodopsins and optogenetics , 2020, Biophysical Reviews.

[11]  Olga Chernomor,et al.  IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era , 2019, bioRxiv.

[12]  Peter Hegemann,et al.  MerMAIDs: a family of metagenomically discovered marine anion-conducting and intensely desensitizing channelrhodopsins , 2019, Nature Communications.

[13]  P. Hegemann,et al.  Unifying photocycle model for light adaptation and temporal evolution of cation conductance in channelrhodopsin-2 , 2018, Proceedings of the National Academy of Sciences.

[14]  H. Baier,et al.  Potassium channel-based optogenetic silencing , 2018, Nature Communications.

[15]  G. Nagel,et al.  Synthetic Light-Activated Ion Channels for Optogenetic Activation and Inhibition , 2018, Front. Neurosci..

[16]  Massimo Pasqualetti,et al.  A light-gated potassium channel for sustained neuronal inhibition , 2018, Nature Methods.

[17]  Jessica E Messier,et al.  Targeting light-gated chloride channels to neuronal somatodendritic domain reduces their excitatory effect in the axon , 2018, bioRxiv.

[18]  Matthew W. Brown,et al.  Comparative genomic analysis of the ‘pseudofungus’ Hyphochytrium catenoides , 2018, Open Biology.

[19]  J. Spudich,et al.  Bacteriorhodopsin-like channelrhodopsins: Alternative mechanism for control of cation conductance , 2017, Proceedings of the National Academy of Sciences.

[20]  J. Simon Wiegert,et al.  Silencing Neurons: Tools, Applications, and Experimental Constraints , 2017, Neuron.

[21]  A. von Haeseler,et al.  UFBoot2: Improving the Ultrafast Bootstrap Approximation , 2017, bioRxiv.

[22]  S. Tsunoda,et al.  Molecular properties of a DTD channelrhodopsin from Guillardia theta , 2017, Biophysics and physicobiology.

[23]  J. Spudich,et al.  Structurally Distinct Cation Channelrhodopsins from Cryptophyte Algae. , 2016, Biophysical journal.

[24]  O. Yizhar,et al.  Biophysical constraints of optogenetic inhibition at presynaptic terminals , 2016, Nature Neuroscience.

[25]  J. Spudich,et al.  Gating mechanisms of a natural anion channelrhodopsin , 2015, Proceedings of the National Academy of Sciences.

[26]  J. Spudich,et al.  Natural light-gated anion channels: A family of microbial rhodopsins for advanced optogenetics , 2015, Science.

[27]  M. Scanziani,et al.  Equalizing Excitation-Inhibition Ratios across Visual Cortical Neurons , 2014, Nature.

[28]  Stefan R. Pulver,et al.  Independent Optical Excitation of Distinct Neural Populations , 2014, Nature Methods.

[29]  P. Hegemann,et al.  Microbial and Animal Rhodopsins: Structures, Functions, and Molecular Mechanisms , 2013, Chemical reviews.

[30]  J. Spudich,et al.  Intramolecular proton transfer in channelrhodopsins. , 2013, Biophysical journal.

[31]  R. Dempski,et al.  Re-Introduction of Transmembrane Serine Residues Reduce the Minimum Pore Diameter of Channelrhodopsin-2 , 2012, PloS one.

[32]  Benjamin F. Grewe,et al.  Two-photon optogenetic toolbox for fast inhibition, excitation and bistable modulation , 2012, Nature Methods.

[33]  E. Bamberg,et al.  The photocycle of channelrhodopsin-2: ultrafast reaction dynamics and subsequent reaction steps. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[34]  E. Isacoff,et al.  Scanless two-photon excitation of channelrhodopsin-2 , 2010, Nature Methods.

[35]  E. Bamberg,et al.  Channelrhodopsin-2 is a leaky proton pump , 2009, Proceedings of the National Academy of Sciences.

[36]  John M. Walker,et al.  Potassium Channels , 2009, Methods in Molecular Biology.

[37]  J. Lanyi,et al.  Proton transfers in the bacteriorhodopsin photocycle. , 2006, Biochimica et biophysica acta.

[38]  Klaus Schulten,et al.  Color tuning in rhodopsins: the mechanism for the spectral shift between bacteriorhodopsin and sensory rhodopsin II. , 2006, Journal of the American Chemical Society.

[39]  K. Deisseroth,et al.  Millisecond-timescale, genetically targeted optical control of neural activity , 2005, Nature Neuroscience.

[40]  S. Waschuk,et al.  Leptosphaeria rhodopsin: bacteriorhodopsin-like proton pump from a eukaryote. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[41]  Richard Horn,et al.  Ionic selectivity revisited: The role of kinetic and equilibrium processes in ion permeation through channels , 2005, The Journal of Membrane Biology.

[42]  E. Bamberg,et al.  Channelrhodopsin-2, a directly light-gated cation-selective membrane channel , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[43]  E. Bamberg,et al.  Channelrhodopsin-1: A Light-Gated Proton Channel in Green Algae , 2002, Science.

[44]  Oleg A. Sineshchekov,et al.  Two rhodopsins mediate phototaxis to low- and high-intensity light in Chlamydomonas reinhardtii , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[45]  A. Krogh,et al.  Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. , 2001, Journal of molecular biology.

[46]  J. V. Van Etten,et al.  A potassium channel protein encoded by chlorella virus PBCV-1. , 2000, Science.