Molecular engineering of PIM-1/Matrimid blend membranes for gas separation

[1]  Y. Yeong,et al.  Thermal induced structural rearrangement of cardo-copolybenzoxazole membranes for enhanced gas transport properties , 2012 .

[2]  S. Kawi,et al.  High-Performance Thermally Self-Cross-Linked Polymer of Intrinsic Microporosity (PIM-1) Membranes for Energy Development , 2012 .

[3]  Ting Yang,et al.  Poly-/metal-benzimidazole nano-composite membranes for hydrogen purification , 2011 .

[4]  Songlin Liu,et al.  Effect of End Groups and Grafting on the CO2Separation Performance of Poly(ethylene glycol) Based Membranes , 2011 .

[5]  L. Shao,et al.  Silica Nanohybrid Membranes with High CO2 Affinity for Green Hydrogen Purification , 2011 .

[6]  Naiying Du,et al.  Polymer nanosieve membranes for CO2-capture applications. , 2011, Nature materials.

[7]  Youchang Xiao,et al.  Grafting thermally labile molecules on cross-linkable polyimide to design membrane materials for natural gas purification and CO2 capture , 2011 .

[8]  G. Robertson,et al.  Polymers of Intrinsic Microporosity with Dinaphthyl and Thianthrene Segments , 2010 .

[9]  Fu Yun Li,et al.  Facilitated transport by hybrid POSS®–Matrimid®–Zn2+ nanocomposite membranes for the separation of natural gas , 2010 .

[10]  P. Budd,et al.  Free Volume Investigation of Polymers of Intrinsic Microporosity (PIMs): PIM-1 and PIM1 Copolymers Incorporating Ethanoanthracene Units , 2010 .

[11]  Neil B. McKeown,et al.  Exploitation of Intrinsic Microporosity in Polymer-Based Materials , 2010 .

[12]  L. Robeson Polymer Blends in Membrane Transport Processes , 2010 .

[13]  Tai‐Shung Chung,et al.  The strategies of molecular architecture and modification of polyimide-based membranes for CO2 removal from natural gas—A review , 2009 .

[14]  S. Hosseini,et al.  Carbon membranes from blends of PBI and polyimides for N2/CH4 and CO2/CH4 separation and hydrogen purification , 2009 .

[15]  Jingshe Song,et al.  Polymers of Intrinsic Microporosity Containing Trifluoromethyl and Phenylsulfone Groups as Materials for Membrane Gas Separation , 2008 .

[16]  Jingshe Song,et al.  Linear High Molecular Weight Ladder Polymers by Optimized Polycondensation of Tetrahydroxytetramethylspirobisindane and 1,4-Dicyanotetrafluorobenzene† , 2008 .

[17]  L. Robeson,et al.  The upper bound revisited , 2008 .

[18]  May-Britt Hägg,et al.  The recovery by carbon molecular sieve membranes of hydrogen transmitted in natural gas networks , 2008 .

[19]  Stephen J. Miller,et al.  Crosslinked mixed matrix membranes for the purification of natural gas: Effects of sieve surface modification , 2008 .

[20]  Young Moo Lee,et al.  Polymers with Cavities Tuned for Fast Selective Transport of Small Molecules and Ions , 2007, Science.

[21]  S. Goh,et al.  Miscibility study of Torlon® polyamide-imide with Matrimid® 5218 polyimide and polybenzimidazole , 2007 .

[22]  Yi Li,et al.  MIXED MATRIX MEMBRANES (MMMS) COMPRISING ORGANIC POLYMERS WITH DISPERSED INORGANIC FILLERS FOR GAS SEPARATION , 2007 .

[23]  B. Freeman,et al.  Plasticization-Enhanced Hydrogen Purification Using Polymeric Membranes , 2006, Science.

[24]  M. Guiver,et al.  Effects of Brominating Matrimid Polyimide on the Physical and Gas Transport Properties of Derived Carbon Membranes , 2005 .

[25]  L. Robeson,et al.  Polymer Blends: A Comprehensive Review , 2005 .

[26]  B. Freeman,et al.  MATERIALS SELECTION GUIDELINES FOR MEMBRANES THAT REMOVE CO2 FROM GAS MIXTURES , 2005 .

[27]  D. Schiraldi,et al.  Effects of Thermal Treatments and Dendrimers Chemical Structures on the Properties of Highly Surface Cross-Linked Polyimide Films , 2005 .

[28]  Yongjiang Huang,et al.  Physical aging of thin glassy polymer films monitored by gas permeability , 2004 .

[29]  J. Eguiazábal,et al.  Partially miscible blends based on a polyarylate and poly(trimethylene terephthalate) , 2004 .

[30]  Neil B. McKeown,et al.  Solution‐Processed, Organophilic Membrane Derived from a Polymer of Intrinsic Microporosity , 2004 .

[31]  P. Tin,et al.  Effects of cross-linking modification on gas separation performance of Matrimid membranes , 2003 .

[32]  G. Robertson,et al.  Enhancement in the Gas Permeabilities of Novel Polysulfones with Pendant 4-Trimethylsilyl-α-hydroxylbenzyl Substituents† , 2003 .

[33]  A. J. Hill,et al.  Ultrapermeable, Reverse-Selective Nanocomposite Membranes , 2002, Science.

[34]  Young Moo Lee,et al.  Gas permeation of poly(amide-6-b-ethylene oxide) copolymer , 2001 .

[35]  Kazuyuki Horie,et al.  Photophysics, photochemistry, and optical properties of polyimides , 2001 .

[36]  Tai‐Shung Chung,et al.  Gas transport properties of 6FDA‐durene/1,4‐phenylenediamine (pPDA) copolyimides , 2000 .

[37]  William J. Koros,et al.  Formation of defect-free polyimide hollow fiber membranes for gas separations , 2000 .

[38]  W. Koros,et al.  Conditioning of Fluorine-Containing Polyimides. 2. Effect of Conditioning Protocol at 8 Volume Dilation on Gas-Transport Properties , 1999 .

[39]  Ineke G.M. Punt,et al.  Suppression of CO2‐plasticization by semiinterpenetrating polymer network formation , 1998 .

[40]  J. Kolar̆ík A model for the yield strength of binary blends of thermoplastics , 1994 .

[41]  Y. Yampolskii Polymeric Gas Separation Membranes , 1993 .

[42]  I. Mita,et al.  Miscibility of polyimide/polyimide blends and charge-transfer fluorescence spectra , 1991 .

[43]  I. Mita,et al.  Molecular aggregation and fluorescence spectra of aromatic polyimides , 1989 .

[44]  D. R. Paul Gas transport in homogeneous multicomponent polymers , 1984 .

[45]  L. Robeson,et al.  Gas permeability characteristics of nitrile‐containing block and random copolymers , 1975 .

[46]  A. Bondi van der Waals Volumes and Radii , 1964 .

[47]  J. Maxwell A Treatise on Electricity and Magnetism , 1873, Nature.