Full convergence of the proximal point method for quasiconvex functions on Hadamard manifolds

In this paper we propose an extension of the proximal point method to solve minimization problems with quasiconvex objective functions on Hadamard manifolds. To reach this goal, we initially extend the concepts of regular and generalized subgradient from Euclidean spaces to Hadamard manifolds and prove that, in the convex case, these concepts coincide with the classical one. For the minimization problem, assuming that the function is bounded from below, in the quasiconvex and lower semicontinuous case, we prove the convergence of the iterations given by the method. Furthermore, under the assumptions that the sequence of proximal parameters is bounded and the function is continuous, we obtain the convergence to a generalized critical point. In particular, our work extends the applications of the proximal point methods for solving constrained minimization problems with nonconvex objective functions in Euclidean spaces when the objective function is convex or quasiconvex on the manifold.

[1]  E. N. Barron,et al.  Calculus of variations in L , 1997 .

[2]  Tamás Rapcsák,et al.  Smooth Nonlinear Optimization in Rn , 1997 .

[3]  P. R. Oliveira,et al.  Proximal point methods for quasiconvex and convex functions with Bregman distances on Hadamard manifolds , 2009 .

[4]  F.G.M. Cunha,et al.  A proximal point algorithm with a ϕ-divergence for quasiconvex programming , 2010 .

[5]  M. Teboulle,et al.  Regularized Lotka-Volterra Dynamical System as Continuous Proximal-Like Method in Optimization , 2004 .

[6]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[7]  Krzysztof C. Kiwiel,et al.  Convergence and efficiency of subgradient methods for quasiconvex minimization , 2001, Math. Program..

[8]  B. Martinet Brève communication. Régularisation d'inéquations variationnelles par approximations successives , 1970 .

[9]  Alexander Kaplan,et al.  Proximal Point Methods and Nonconvex Optimization , 1998, J. Glob. Optim..

[10]  I. Holopainen Riemannian Geometry , 1927, Nature.

[11]  João X. da Cruz Neto,et al.  Convex- and Monotone-Transformable Mathematical Programming Problems and a Proximal-Like Point Method , 2006, J. Glob. Optim..

[12]  Hédy Attouch,et al.  On the convergence of the proximal algorithm for nonsmooth functions involving analytic features , 2008, Math. Program..

[13]  R. Tyrrell Rockafellar,et al.  Variational Analysis , 1998, Grundlehren der mathematischen Wissenschaften.

[14]  Robert E. Mahony,et al.  Convergence of the Iterates of Descent Methods for Analytic Cost Functions , 2005, SIAM J. Optim..

[15]  P. Tseng Convergence of a Block Coordinate Descent Method for Nondifferentiable Minimization , 2001 .

[16]  C. Udriste,et al.  Optimization Methods on Riemannian Manifolds , 1997 .

[17]  L. Vandenberghe,et al.  Quasiconvex Optimization and Location Theory , 1998 .

[18]  H. Attouch,et al.  Worthwhile-to-move behaviors as temporary satisficing without too many sacrificing processes , 2009, 0905.1238.

[19]  P. Eberlein Geometry of Nonpositively Curved Manifolds , 1997 .

[20]  Michael J. Todd,et al.  On the Riemannian Geometry Defined by Self-Concordant Barriers and Interior-Point Methods , 2002, Found. Comput. Math..

[21]  B. Martinet,et al.  R'egularisation d''in'equations variationnelles par approximations successives , 1970 .

[22]  R. Saigal,et al.  Handbook of semidefinite programming : theory, algorithms, and applications , 2000 .

[23]  Jürgen Jost,et al.  Nonpositive Curvature: Geometric And Analytic Aspects , 1997 .

[24]  Werner Ballmann,et al.  Lectures on Spaces of Nonpositive Curvature , 1995 .

[25]  Jein-Shan Chen,et al.  Entropy-like proximal algorithms based on a second-order homogeneous distance function for quasi-convex programming , 2007, J. Glob. Optim..

[26]  Jein-Shan Chen,et al.  A proximal-like algorithm for a class of nonconvex programming , 2008 .

[27]  P. R. Oliveira,et al.  New Self-Concordant Barrier for the Hypercube , 2007 .

[28]  O. P. Ferreira,et al.  Proximal Point Algorithm On Riemannian Manifolds , 2002 .

[29]  Arkadi Nemirovski,et al.  Lectures on modern convex optimization - analysis, algorithms, and engineering applications , 2001, MPS-SIAM series on optimization.

[30]  Felipe Alvarez,et al.  Hessian Riemannian Gradient Flows in Convex Programming , 2018, SIAM J. Control. Optim..

[31]  A. Ruszczynski,et al.  Nonlinear Optimization , 2006 .

[32]  O. Rothaus Domains of Positivity , 1958 .

[33]  R. Rockafellar Monotone Operators and the Proximal Point Algorithm , 1976 .

[34]  João X. da Cruz Neto,et al.  A proximal method with separable Bregman distances for quasiconvex minimization over the nonnegative orthant , 2010, Eur. J. Oper. Res..

[35]  Yulei Luo,et al.  Mathematical Economics , 2019, Springer Texts in Business and Economics.

[36]  M. Bridson,et al.  Metric Spaces of Non-Positive Curvature , 1999 .

[37]  B. Brunt The calculus of variations , 2003 .