Non‐linear random effects models with continuous time autoregressive errors: a Bayesian approach

Measurements on subjects in longitudinal medical studies are often collected at several different times or under different experimental conditions. Such multiple observations on the same subject generally produce serially correlated outcomes. Traditional regression methods assume that observations within subjects are independent which is not true in longitudinal data. In this paper we develop a Bayesian analysis for the traditional non-linear random effects models with errors that follow a continuous time autoregressive process. In this way, unequally spaced observations do not present a problem in the analysis. Parameter estimation of this model is done via the Gibbs sampling algorithm. The method is illustrated with data coming from a study in pregnant women in Santiago, Chile, that involves the non-linear regression of plasma volume on gestational age.

[1]  E. Liski,et al.  Prediction in repeated-measures models with engineering applications , 1996 .

[2]  Repeated measures, interventions, and time series analysis , 1985, Psychoneuroendocrinology.

[3]  J. Ware Linear Models for the Analysis of Longitudinal Studies , 1985 .

[4]  Richard H. Jones FITTING A CONTINUOUS TIME AUTOREGRESSION TO DISCRETE DATA , 1981 .

[5]  Peter Müller,et al.  A Bayesian Population Model with Hierarchical Mixture Priors Applied to Blood Count Data , 1997 .

[6]  E. Vonesh,et al.  Linear and Nonlinear Models for the Analysis of Repeated Measurements , 1996 .

[7]  Hong Chang,et al.  Model Determination Using Predictive Distributions with Implementation via Sampling-Based Methods , 1992 .

[8]  S. Pantula,et al.  Nested analysis of variance with autocorrelated errors. , 1985, Biometrics.

[9]  D. Zimmerman,et al.  Computational aspects of likelihood-based estimation of first-order antedependence models , 1998 .

[10]  R. H. Jones,et al.  Unequally spaced longitudinal data with AR(1) serial correlation. , 1991, Biometrics.

[11]  Joseph G. Ibrahim,et al.  Monte Carlo Methods in Bayesian Computation , 2000 .

[12]  James E. Bennett,et al.  The Bayesian modeling of covariates for population pharmacokinetic models , 1996 .

[13]  A Racine-Poon,et al.  A Bayesian approach to nonlinear random effects models. , 1985, Biometrics.

[14]  Adrian F. M. Smith,et al.  Bayesian Analysis of Linear and Non‐Linear Population Models by Using the Gibbs Sampler , 1994 .

[15]  Richard H. Jones,et al.  Longitudinal Data with Serial Correlation : A State-Space Approach , 1994 .

[16]  R. Jennrich,et al.  Unbalanced repeated-measures models with structured covariance matrices. , 1986, Biometrics.

[17]  M. Kenward,et al.  Parametric modelling of growth curve data: An overview , 2001 .

[18]  G. T. Smith,et al.  Application of Nonlinear Models with Random Coefficients to Growth Data , 1991 .

[19]  John Geweke,et al.  Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments , 1991 .

[20]  C. A. Glasbey,et al.  Correlated Residuals in Non‐Linear Regression Applied to Growth Data , 1979 .

[21]  Walter R. Gilks,et al.  MCMC for nonlinear hierarchical models , 1995 .

[22]  Marie Davidian,et al.  The Nonlinear Mixed Effects Model with a Smooth Random Effects Density , 1993 .

[23]  G. Reinsel,et al.  Models for Longitudinal Data with Random Effects and AR(1) Errors , 1989 .

[24]  Ulrich Menzefricke,et al.  Bayesian prediction in growth-curve models with correlated errors , 1999 .

[25]  Stephen G Walker,et al.  AN EM ALGORITHM FOR NONLINEAR RANDOM EFFECTS MODELS , 1996 .

[26]  Philip Heidelberger,et al.  Simulation Run Length Control in the Presence of an Initial Transient , 1983, Oper. Res..

[27]  Jack C. Lee Prediction and estimation of growth curves with special covariance structures , 1988 .

[28]  G. Casella,et al.  The Effect of Improper Priors on Gibbs Sampling in Hierarchical Linear Mixed Models , 1996 .

[29]  L D Broemeling,et al.  A Bayesian analysis of regression models with continuous errors with application to longitudinal studies. , 1997, Statistics in medicine.

[30]  J. Wakefield The Bayesian Analysis of Population Pharmacokinetic Models , 1996 .

[31]  D. Bates,et al.  Mixed-Effects Models in S and S-PLUS , 2001 .

[32]  Guillermo Marshall,et al.  A Bayesian Approach for Nonlinear Regression Models with Continuous Errors , 2003 .

[33]  Richard H. Jones,et al.  Serial correlation in unequally spaced longitudinal data , 1990 .

[34]  P. Diggle,et al.  Analysis of Longitudinal Data. , 1997 .

[35]  D. Bates,et al.  Nonlinear mixed effects models for repeated measures data. , 1990, Biometrics.

[36]  R. Potthoff,et al.  A generalized multivariate analysis of variance model useful especially for growth curve problems , 1964 .