Hypoxia-Inducible Factor 2α Mutation-Related Paragangliomas Classify as Discrete Pseudohypoxic Subcluster12

[1]  Yingyong Hou,et al.  HIF2A gain-of-function mutations detected in duodenal gangliocytic paraganglioma. , 2016, Endocrine-related cancer.

[2]  D. Figarella-Branger,et al.  Somatic gain-of-function HIF2A mutations in sporadic central nervous system hemangioblastomas , 2016, Journal of Neuro-Oncology.

[3]  E. Letouzé,et al.  Deciphering the molecular basis of invasiveness in Sdhb-deficient cells , 2015, Oncotarget.

[4]  K. Pacak,et al.  Pheochromocytoma: Gasping for Air , 2015, Hormones and Cancer.

[5]  D. Hua,et al.  Novel roles of TMEM100: inhibition metastasis and proliferation of hepatocellular carcinoma , 2015, Oncotarget.

[6]  P. Lou,et al.  Instability of succinate dehydrogenase in SDHD polymorphism connects reactive oxygen species production to nuclear and mitochondrial genomic mutations in yeast. , 2015, Antioxidants & redox signaling.

[7]  U. Engelke,et al.  Genotype-specific differences in the tumor metabolite profile of pheochromocytoma and paraganglioma using untargeted and targeted metabolomics. , 2015, The Journal of clinical endocrinology and metabolism.

[8]  O. Nakagawa,et al.  Impairment of endothelial‐mesenchymal transformation during atrioventricular cushion formation in Tmem100 null embryos , 2015, Developmental dynamics : an official publication of the American Association of Anatomists.

[9]  Matthew W. Wilson,et al.  Ocular manifestations of hypoxia-inducible factor-2α paraganglioma-somatostatinoma-polycythemia syndrome. , 2014, Ophthalmology.

[10]  M. Koutsilieris,et al.  Detection of circulating tumor cells in breast cancer patients using multiplex reverse transcription-polymerase chain reaction and specific primers for MGB, PTHRP and KRT19 correlation with clinicopathological features. , 2014, Anticancer research.

[11]  K. Pacak,et al.  Opposing effects of HIF1α and HIF2α on chromaffin cell phenotypic features and tumor cell proliferation: Insights from MYC‐associated factor X , 2014, International journal of cancer.

[12]  F. Beuschlein,et al.  Krebs cycle metabolite profiling for identification and stratification of pheochromocytomas/paragangliomas due to succinate dehydrogenase deficiency. , 2014, The Journal of clinical endocrinology and metabolism.

[13]  C. Larsson,et al.  Frequent EPAS1 / HIF2 a exons 9 and 12 mutations in non-familial pheochromocytoma , 2014 .

[14]  M. Heymann,et al.  Mosaicism in HIF2A-related polycythemia-paraganglioma syndrome. , 2014, The Journal of clinical endocrinology and metabolism.

[15]  Wendy P Robinson,et al.  Global analysis of DNA methylation changes during progression of oral cancer. , 2013, Oral oncology.

[16]  K. Pacak,et al.  Hypoxia-inducible factor signaling in pheochromocytoma: turning the rudder in the right direction. , 2013, Journal of the National Cancer Institute.

[17]  S. Srikantan,et al.  In vivo and in vitro oncogenic effects of HIF2A mutations in pheochromocytomas and paragangliomas. , 2013, Endocrine-related cancer.

[18]  A. Tischler,et al.  New syndrome of paraganglioma and somatostatinoma associated with polycythemia. , 2013, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[19]  J. Pelletier,et al.  The von Hippel-Lindau Protein pVHL Inhibits Ribosome Biogenesis and Protein Synthesis* , 2013, The Journal of Biological Chemistry.

[20]  P. Munson,et al.  Genotype and tumor locus determine expression profile of pseudohypoxic pheochromocytomas and paragangliomas. , 2013, Neoplasia.

[21]  J. Prchal,et al.  A novel EPAS1/HIF2A germline mutation in a congenital polycythemia with paraganglioma , 2013, Journal of Molecular Medicine.

[22]  G. Pita,et al.  Tumoral EPAS1 (HIF2A) mutations explain sporadic pheochromocytoma and paraganglioma in the absence of erythrocytosis. , 2013, Human molecular genetics.

[23]  A. Gimenez-Roqueplo,et al.  HIF2A mutations in paraganglioma with polycythemia. , 2012, The New England journal of medicine.

[24]  F. Sotgia,et al.  Metabolic reprogramming and two-compartment tumor metabolism , 2012, Cell cycle.

[25]  Electron Kebebew,et al.  Somatic HIF2A gain-of-function mutations in paraganglioma with polycythemia. , 2012, The New England journal of medicine.

[26]  A. Tischler,et al.  Warburg Effect’s Manifestation in Aggressive Pheochromocytomas and Paragangliomas: Insights from a Mouse Cell Model Applied to Human Tumor Tissue , 2012, PloS one.

[27]  T. Cenci,et al.  Von hippel-lindau disease and erythrocytosis. , 2012, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[28]  X. Jeunemaître,et al.  Epithelial to mesenchymal transition is activated in metastatic pheochromocytomas and paragangliomas caused by SDHB gene mutations. , 2012, The Journal of clinical endocrinology and metabolism.

[29]  Debra L. Fulton,et al.  The Transcription Factor Encyclopedia , 2012, Genome Biology.

[30]  P. Igaz,et al.  Rationale for Anti-angiogenic Therapy in Pheochromocytoma and Paraganglioma , 2012, Endocrine Pathology.

[31]  J. López-Barneo,et al.  Prolyl Hydroxylase-dependent Modulation of Eukaryotic Elongation Factor 2 Activity and Protein Translation under Acute Hypoxia* , 2012, The Journal of Biological Chemistry.

[32]  Brian Keith,et al.  HIF1α and HIF2α: sibling rivalry in hypoxic tumour growth and progression , 2011, Nature Reviews Cancer.

[33]  Charis Eng,et al.  Multiple endocrine neoplasia type 2: An overview , 2011, Genetics in Medicine.

[34]  Jiannis Ragoussis,et al.  High-resolution genome-wide mapping of HIF-binding sites by ChIP-seq. , 2011, Blood.

[35]  L. Hofbauer,et al.  Measurements of plasma methoxytyramine, normetanephrine, and metanephrine as discriminators of different hereditary forms of pheochromocytoma. , 2011, Clinical chemistry.

[36]  A. Tischler,et al.  Tyrosine hydroxylase, chromogranin A, and steroidogenic acute regulator as markers for successful separation of human adrenal medulla , 2010, Cell and Tissue Research.

[37]  C. Yeo,et al.  Periampullary and Duodenal Neoplasms in Neurofibromatosis Type 1: Two Cases and an Updated 20-Year Review of the Literature Yielding 76 Cases , 2010, Journal of Gastrointestinal Surgery.

[38]  S. Serra,et al.  The Use of Cytokeratin 19 (CK19) Immunohistochemistry in Lesions of the Pancreas, Gastrointestinal Tract, and Liver , 2010, Applied immunohistochemistry & molecular morphology : AIMM.

[39]  P. Bénit,et al.  The Warburg Effect Is Genetically Determined in Inherited Pheochromocytomas , 2009, PloS one.

[40]  S. Altmeyer-Morel,et al.  Gene expression profiling of alpha‐radiation‐induced rat osteosarcomas: Identification of dysregulated genes involved in radiation‐induced tumorigenesis of bone , 2009, International journal of cancer.

[41]  Michael Q. Zhang,et al.  An integrative genomics approach identifies Hypoxia Inducible Factor-1 (HIF-1)-target genes that form the core response to hypoxia , 2009, Nucleic acids research.

[42]  M. Mannelli,et al.  Functional study in a yeast model of a novel succinate dehydrogenase subunit B gene germline missense mutation (C191Y) diagnosed in a patient affected by a glomus tumor. , 2009, Human molecular genetics.

[43]  B. Lemire,et al.  Mutations in the C. elegans succinate dehydrogenase iron-sulfur subunit promote superoxide generation and premature aging. , 2009, Journal of molecular biology.

[44]  Jaap Keijer,et al.  HIF and reactive oxygen species regulate oxidative phosphorylation in cancer. , 2008, Carcinogenesis.

[45]  H. Moch,et al.  Somatostatin-producing neuroendocrine tumors of the duodenum and pancreas: incidence, types, biological behavior, association with inherited syndromes, and functional activity. , 2008, Endocrine-related cancer.

[46]  R. Worrell,et al.  Neuropeptide Y expression in phaeochromocytomas: relative absence in tumours from patients with von Hippel-Lindau syndrome. , 2007, The Journal of endocrinology.

[47]  Å. Borg,et al.  Recruitment of HIF-1alpha and HIF-2alpha to common target genes is differentially regulated in neuroblastoma: HIF-2alpha promotes an aggressive phenotype. , 2006, Cancer cell.

[48]  Russell G. Jones,et al.  Hypoxia-induced energy stress regulates mRNA translation and cell growth. , 2006, Molecular cell.

[49]  Sandro Santagata,et al.  A HIF1α Regulatory Loop Links Hypoxia and Mitochondrial Signals in Pheochromocytomas , 2005, PLoS genetics.

[50]  P. Munson,et al.  Distinct gene expression profiles in norepinephrine- and epinephrine-producing hereditary and sporadic pheochromocytomas: activation of hypoxia-driven angiogenic pathways in von Hippel-Lindau syndrome. , 2004, Endocrine-related cancer.

[51]  J. Houštěk,et al.  A new role for the von Hippel-Lindau tumor suppressor protein: stimulation of mitochondrial oxidative phosphorylation complex biogenesis. , 2004, Carcinogenesis.

[52]  T. Zelinka,et al.  HIF signaling pathway in pheochromocytoma and other neuroendocrine tumors. , 2014, Physiological research.

[53]  U. Shankavaram,et al.  Germ-line PHD1 and PHD2 mutations detected in patients with pheochromocytoma/paraganglioma-polycythemia , 2014, Journal of Molecular Medicine.

[54]  K. Pacak,et al.  Role of hypoxia and HIF2α in development of the sympathoadrenal cell lineage and chromaffin cell tumors with distinct catecholamine phenotypic features. , 2013, Advances in pharmacology.

[55]  Andrew L. Kung,et al.  A HIF1-alpha Regulatory Loop Links Hypoxiaand Mitochondrial Signals in Pheochromocytomas , 2005 .

[56]  S. Kawa,et al.  Duodenal somatostatinoma and erythrocytosis in a patient with von Hippel-Lindau disease type 2A. , 2001, Internal medicine.