Autophagy blockade limits HER2+ breast cancer tumorigenesis by perturbing HER2 trafficking and promoting release via small extracellular vesicles.

[1]  L. Lu,et al.  Single-cell RNA-sequencing reveals distinct patterns of cell state heterogeneity in mouse models of breast cancer , 2020, eLife.

[2]  J. Guan,et al.  FIP200 Suppresses Immune Checkpoint Therapy Responses in Breast Cancers by Limiting AZI2/TBK1/IRF Signaling Independent of Its Canonical Autophagy Function , 2020, Cancer Research.

[3]  Raghu Kalluri,et al.  The biology, function, and biomedical applications of exosomes , 2020, Science.

[4]  J. Guan,et al.  FAK signaling in Cancer-Associated Fibroblasts promotes breast cancer cell migration and metastasis by exosomal miRNAs-mediated intercellular communication , 2020, Oncogene.

[5]  Hector H. Huang,et al.  The LC3-Conjugation Machinery Specifies the Loading of RNA-Binding Proteins into Extracellular Vesicles , 2019, Nature Cell Biology.

[6]  Dylan T Burnette,et al.  Reassessment of Exosome Composition , 2019, Cell.

[7]  R. Blelloch,et al.  Suppression of Exosomal PD-L1 Induces Systemic Anti-tumor Immunity and Memory , 2019, Cell.

[8]  J. Guan,et al.  Quantitative Analysis of Interactive Behavior of Mitochondria and Lysosomes Using Structured Illumination Microscopy , 2018, bioRxiv.

[9]  David W. Greening,et al.  Extracellular vesicles in cancer — implications for future improvements in cancer care , 2018, Nature Reviews Clinical Oncology.

[10]  E. White,et al.  Autophagy maintains tumor growth through circulating arginine , 2018, Nature.

[11]  J. Guan,et al.  Improved efficacy of mitochondrial disrupting agents upon inhibition of autophagy in a mouse model of BRCA1-deficient breast cancer , 2018, Autophagy.

[12]  Wei Zhang,et al.  Exosomal PD-L1 Contributes to Immunosuppression and is Associated with anti-PD-1 Response , 2018, Nature.

[13]  D. Abdelaziz,et al.  Autophagy regulates exosomal release of prions in neuronal cells , 2018, The Journal of Biological Chemistry.

[14]  S. Vega-Rubín-de-Celis,et al.  Increased autophagy blocks HER2-mediated breast tumorigenesis , 2018, Proceedings of the National Academy of Sciences.

[15]  Graça Raposo,et al.  Shedding light on the cell biology of extracellular vesicles , 2018, Nature Reviews Molecular Cell Biology.

[16]  Xiaoting Zhang,et al.  HER2-Driven Breast Tumorigenesis Relies upon Interactions of the Estrogen Receptor with Coactivator MED1. , 2018, Cancer research.

[17]  J. Côté,et al.  Atg5 Disassociates the V1V0-ATPase to Promote Exosome Production and Tumor Metastasis Independent of Canonical Macroautophagy. , 2017, Developmental cell.

[18]  A. Thorburn,et al.  Targeting autophagy in cancer , 2017, Nature Reviews Cancer.

[19]  Y. Ba,et al.  Exosome-delivered EGFR regulates liver microenvironment to promote gastric cancer liver metastasis , 2017, Nature Communications.

[20]  Sheng-Ping L. Hwang,et al.  ErbB2 regulates autophagic flux to modulate the proteostasis of APP-CTFs in Alzheimer’s disease , 2017, Proceedings of the National Academy of Sciences.

[21]  P. A. Friedman,et al.  The scaffolding protein NHERF1 regulates the stability and activity of the tyrosine kinase HER2 , 2017, The Journal of Biological Chemistry.

[22]  M. Hung,et al.  The role of HER2, EGFR, and other receptor tyrosine kinases in breast cancer , 2016, Cancer and Metastasis Reviews.

[23]  Han Liu,et al.  Neratinib induces ErbB2 ubiquitylation and endocytic degradation via HSP90 dissociation in breast cancer cells. , 2016, Cancer letters.

[24]  S. Subramaniam,et al.  p62/SQSTM1 by Binding to Vitamin D Receptor Inhibits Hepatic Stellate Cell Activity, Fibrosis, and Liver Cancer. , 2016, Cancer cell.

[25]  E. White,et al.  Recent insights into the function of autophagy in cancer , 2016, Genes & development.

[26]  S. Subramaniam,et al.  p62, Upregulated during Preneoplasia, Induces Hepatocellular Carcinogenesis by Maintaining Survival of Stressed HCC-Initiating Cells. , 2016, Cancer cell.

[27]  J. Guan,et al.  Autophagy Differentially Regulates Distinct Breast Cancer Stem-like Cells in Murine Models via EGFR/Stat3 and Tgfβ/Smad Signaling. , 2016, Cancer research.

[28]  J. Guan,et al.  Distinct roles of autophagy-dependent and -independent functions of FIP200 revealed by generation and analysis of a mutant knock-in mouse model , 2016, Genes & development.

[29]  E. White,et al.  Atg7 cooperates with Pten loss to drive prostate cancer tumor growth , 2016, Genes & development.

[30]  P. A. Friedman,et al.  PMCA2 regulates HER2 protein kinase localization and signaling and promotes HER2-mediated breast cancer , 2016, Proceedings of the National Academy of Sciences.

[31]  J. Debnath,et al.  ATG12-ATG3 Interacts with Alix to Promote Basal Autophagic Flux and Late Endosome Function , 2015, Nature Cell Biology.

[32]  A. Vazquez,et al.  Autophagy regulator BECN1 suppresses mammary tumorigenesis driven by WNT1 activation and following parity , 2014, Autophagy.

[33]  J. Gruenberg,et al.  Endosome maturation, transport and functions. , 2014, Seminars in cell & developmental biology.

[34]  G. Bhanot,et al.  ERBB2 overexpression suppresses stress-induced autophagy and renders ERBB2-induced mammary tumorigenesis independent of monoallelic Becn1 loss , 2014, Autophagy.

[35]  M. Miączyńska Effects of membrane trafficking on signaling by receptor tyrosine kinases. , 2013, Cold Spring Harbor perspectives in biology.

[36]  E. White,et al.  Autophagy sustains mitochondrial glutamine metabolism and growth of BrafV600E-driven lung tumors. , 2013, Cancer discovery.

[37]  David A. Scott,et al.  Genome engineering using the CRISPR-Cas9 system , 2013, Nature Protocols.

[38]  M. Wicha,et al.  Distinct FAK activities determine progenitor and mammary stem cell characteristics. , 2013, Cancer research.

[39]  E. Cuyás,et al.  The anti-malarial chloroquine overcomes Primary resistance and restores sensitivity to Trastuzumab in HER2-positive breast cancer , 2013, Scientific Reports.

[40]  Simon C Watkins,et al.  Interaction between Her2 and Beclin-1 Proteins Underlies a New Mechanism of Reciprocal Regulation* , 2013, The Journal of Biological Chemistry.

[41]  A. Sivachenko,et al.  Sequence analysis of mutations and translocations across breast cancer subtypes , 2012, Nature.

[42]  Gema Moreno-Bueno,et al.  Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET , 2012, Nature Medicine.

[43]  E. White Deconvoluting the context-dependent role for autophagy in cancer , 2012, Nature Reviews Cancer.

[44]  E. White Role of autophagy in cancer , 2012 .

[45]  W. Gradishar HER2 therapy--an abundance of riches. , 2012, The New England journal of medicine.

[46]  P. De Camilli,et al.  Recruitment of OCRL and Inpp5B to phagosomes by Rab5 and APPL1 depletes phosphoinositides and attenuates Akt signaling , 2012, Molecular biology of the cell.

[47]  Joachim Goedhart,et al.  Structure-guided evolution of cyan fluorescent proteins towards a quantum yield of 93% , 2012, Nature Communications.

[48]  O. Sansom,et al.  HER2 overcomes PTEN (loss)-induced senescence to cause aggressive prostate cancer , 2011, Proceedings of the National Academy of Sciences.

[49]  H. Ke,et al.  Beclin1 Controls the Levels of p53 by Regulating the Deubiquitination Activity of USP10 and USP13 , 2011, Cell.

[50]  Ari Helenius,et al.  Endosome maturation , 2011, The EMBO journal.

[51]  J. Guan,et al.  Suppression of autophagy by FIP200 deletion inhibits mammary tumorigenesis. , 2011, Genes & development.

[52]  C. Arteaga,et al.  Resistance to HER2-directed antibodies and tyrosine kinase inhibitors , 2011, Cancer biology & therapy.

[53]  Y. Eishi,et al.  Autophagy-deficient mice develop multiple liver tumors. , 2011, Genes & development.

[54]  Jason M. Held,et al.  ErbB2 trafficking and degradation associated with K48 and K63 polyubiquitination. , 2010, Cancer research.

[55]  Congcong He,et al.  The Beclin 1 interactome. , 2010, Current opinion in cell biology.

[56]  Keara M. Lane,et al.  Dicer1 functions as a haploinsufficient tumor suppressor. , 2009, Genes & development.

[57]  A. Sorkin,et al.  Endocytosis and signalling: intertwining molecular networks , 2009, Nature Reviews Molecular Cell Biology.

[58]  J. Menéndez,et al.  Autophagy Facilitates the Development of Breast Cancer Resistance to the Anti-HER2 Monoclonal Antibody Trastuzumab , 2009, PloS one.

[59]  A. Sorkin,et al.  Endocytosis and intracellular trafficking of ErbBs. , 2009, Experimental cell research.

[60]  A. Jimeno,et al.  HER2 in gastric cancer: a new prognostic factor and a novel therapeutic target. , 2008, Annals of oncology : official journal of the European Society for Medical Oncology.

[61]  J. Guan,et al.  FIP200, a key signaling node to coordinately regulate various cellular processes. , 2008, Cellular signalling.

[62]  I. Madshus,et al.  Geldanamycin-Induced Down-Regulation of ErbB2 from the Plasma Membrane Is Clathrin Dependent but Proteasomal Activity Independent , 2008, Molecular Cancer Research.

[63]  P. Bastiaens,et al.  Prolonged EGFR Signaling by ERBB2‐Mediated Sequestration at the Plasma Membrane , 2008, Traffic.

[64]  C. Fader,et al.  Induction of Autophagy Promotes Fusion of Multivesicular Bodies with Autophagic Vacuoles in K562 Cells , 2007, Traffic.

[65]  Mads Lerdrup,et al.  Endocytic down-regulation of ErbB2 is stimulated by cleavage of its C-terminus. , 2007, Molecular biology of the cell.

[66]  S. Cory,et al.  The Bcl-2 apoptotic switch in cancer development and therapy , 2007, Oncogene.

[67]  Masaaki Komatsu,et al.  Loss of autophagy in the central nervous system causes neurodegeneration in mice , 2006, Nature.

[68]  K. Guan,et al.  Identification of FIP200 interaction with the TSC1–TSC2 complex and its role in regulation of cell size control , 2005, The Journal of cell biology.

[69]  J. Guan,et al.  Mechanism of cell cycle regulation by FIP200 in human breast cancer cells. , 2005, Cancer research.

[70]  A. Helenius,et al.  Rab7 Associates with Early Endosomes to Mediate Sorting and Transport of Semliki Forest Virus to Late Endosomes , 2005, PLoS biology.

[71]  F. Hirsch,et al.  The role of HER2/neu expression and trastuzumab in non-small cell lung cancer. , 2004, Seminars in oncology.

[72]  B. van Deurs,et al.  Association with membrane protrusions makes ErbB2 an internalization-resistant receptor. , 2004, Molecular biology of the cell.

[73]  Govind Bhagat,et al.  Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. , 2003, The Journal of clinical investigation.

[74]  V. Puri,et al.  Rab proteins mediate Golgi transport of caveola-internalized glycosphingolipids and correct lipid trafficking in Niemann-Pick C cells. , 2002, The Journal of clinical investigation.

[75]  R. Cardiff,et al.  Active signaling by Neu in transgenic mice , 1998, Oncogene.

[76]  M. Zerial,et al.  Inhibition of rab5 GTPase activity stimulates membrane fusion in endocytosis. , 1994, The EMBO journal.

[77]  G. Carpenter,et al.  The carboxyl terminus of epidermal growth factor receptor/erbB-2 chimerae is internalization impaired. , 1993, Oncogene.

[78]  R. Cardiff,et al.  Expression of the neu protooncogene in the mammary epithelium of transgenic mice induces metastatic disease. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[79]  W. Remmele,et al.  [Recommendation for uniform definition of an immunoreactive score (IRS) for immunohistochemical estrogen receptor detection (ER-ICA) in breast cancer tissue]. , 1987, Der Pathologe.

[80]  C. Kenific,et al.  Cellular and metabolic functions for autophagy in cancer cells. , 2015, Trends in cell biology.

[81]  Miguel C. Seabra,et al.  Rab27a and Rab27b control different steps of the exosome secretion pathway , 2010, Nature Cell Biology.