The generation and evolution of the archean continental crust: the granitoid story in southeastern brazil

[1]  W. Teixeira,et al.  Archean sodic metagranitoids from the Southern São Francisco Craton: Review, petrogenesis, and tectonic implications , 2021 .

[2]  E. al.,et al.  Diversification of Archean tonalite-trondhjemite-granodiorite suites in a mushy middle crust , 2021, Geology.

[3]  C. Hawkesworth,et al.  A Pilbara perspective on the generation of Archaean continental crust , 2021 .

[4]  C. Zuluaga,et al.  Archean continental crust formed by magma hybridization and voluminous partial melting , 2021, Scientific Reports.

[5]  E. Dantas,et al.  Provenance of passive-margin and syn-collisional units: Implications for the geodynamic evolution of the Southern Brasília Orogen, West Gondwana , 2020 .

[6]  E. Dantas,et al.  A magmatic barcode for the São Francisco Craton: Contextual in-situ SHRIMP U Pb baddeleyite and zircon dating of the Lavras, Pará de Minas and Formiga dyke swarms and implications for Columbia and Rodinia reconstructions , 2020 .

[7]  W. Collins,et al.  TTG generation by fluid-fluxed crustal melting: Direct evidence from the Proterozoic Georgetown Inlier, NE Australia , 2020 .

[8]  J. Moyen,et al.  The multiple ways of recycling Archaean crust: A case study from the ca. 3.1 Ga granitoids from the Barberton Greenstone Belt, South Africa , 2020 .

[9]  E. Dantas,et al.  Significance of age periodicity in the continental crust record: The São Francisco Craton and adjacent Neoproterozoic orogens as a case study , 2020 .

[10]  Peter A. Cawood,et al.  The Evolution of the Continental Crust and the Onset of Plate Tectonics , 2020, Frontiers in Earth Science.

[11]  J. Halla The TTG-Amphibolite Terrains of Arctic Fennoscandia: Infinite Networks of Amphibolite Metatexite-Diatexite Transitions , 2020, Frontiers in Earth Science.

[12]  E. Dantas,et al.  U-Pb and Lu-Hf isotope systematics on detrital zircon from the southern São Francisco Craton's Neoproterozoic passive margin: Tectonic implications , 2020, Journal of South American Earth Sciences.

[13]  M. Brown,et al.  Plate Tectonics and the Archean Earth , 2020, Annual Review of Earth and Planetary Sciences.

[14]  W. Amaral,et al.  Geochronological evolution of the Pitangui greenstone belt, southern São Francisco Craton, Brazil: Constraints from U-Pb zircon age, geochemistry and field relationships , 2020 .

[15]  Yuanyun Wen,et al.  Dehydration melting of amphibolite at 1.5 ​GPa and 800–950 ​°C: Implications for the Mesozoic potassium-rich adakite in the eastern North China Craton , 2020 .

[16]  M. Kusiak,et al.  Multi-stage crustal growth and Neoarchean geodynamics in the Eastern Dharwar Craton, southern India , 2020 .

[17]  J. Moyen,et al.  Earth’s earliest granitoids are crystal-rich magma reservoirs tapped by silicic eruptions , 2020, Nature Geoscience.

[18]  C. Lana,et al.  Insights into orogenic processes from drab schists and minor intrusions: Southern São Francisco Craton, Brazil , 2019, Lithos.

[19]  F. Alkmim,et al.  Metamorphism and exhumation of basement gneiss domes in the Quadrilátero Ferrífero: Two stage dome-and-keel evolution? , 2019, Geoscience Frontiers.

[20]  D. Viete,et al.  Metamorphism and the evolution of plate tectonics , 2019, Nature.

[21]  W. Collins,et al.  Repeated S–I–A-type granite trilogy in the Lachlan Orogen and geochemical contrasts with A-type granites in Nigeria: implications for petrogenesis and tectonic discrimination , 2019, Special Publications.

[22]  C. Lamarão,et al.  Neoarchean A-type granitoids from Carajás province (Brazil): New insights from geochemistry, geochronology and microstructural analysis , 2019, Precambrian Research.

[23]  A. Larionov,et al.  2.6 Ga high-Si rhyolites and granites in the Kursk Domain, Eastern Sarmatia: Petrology and application for the Archaean palaeocontinental correlations , 2019, Precambrian Research.

[24]  A. Zanardo,et al.  Archean and paleoproterozoic crust generation events, Amparo complex and Serra Negra orthogneiss in southern Brasília Orogen, SE Brazil , 2019, Journal of South American Earth Sciences.

[25]  W. Teixeira,et al.  Neoarchean reworking of TTG-like crust in the southernmost portion of the São Francisco Craton: U-Pb zircon dating and geochemical evidence from the São Tiago Batholith , 2018, Precambrian Research.

[26]  J. Moyen,et al.  Archaean tectonic systems: A view from igneous rocks , 2018 .

[27]  K. Mezger,et al.  Earth’s early O2 cycle suppressed by primitive continents , 2017 .

[28]  S. K. Verma,et al.  Geochemistry of komatiites and basalts from the Rio das Velhas and Pitangui greenstone belts, São Francisco Craton, Brazil: Implications for the origin, evolution, and tectonic setting , 2017 .

[29]  S. K. Verma,et al.  Geochronological and geochemical evidences for extension-related Neoarchean granitoids in the southern São Francisco Craton, Brazil , 2017 .

[30]  Kei Sato,et al.  Constraining timing and P-T conditions of continental collision and late overprinting in the Southern Brasília Orogen (SE-Brazil): U-Pb zircon ages and geothermobarometry of the Andrelândia Nappe System , 2017 .

[31]  A. Cabral,et al.  Geology of the Pitangui greenstone belt, Minas Gerais, Brazil: Stratigraphy, geochronology and BIF geochemistry , 2017 .

[32]  F. Alkmim,et al.  U–Pb ages and Hf-isotope data of detrital zircons from the late Neoarchean-Paleoproterozoic Minas Basin, SE Brazil , 2017 .

[33]  C. Kirkland,et al.  Earth’s first stable continents did not form by subduction , 2017, Nature.

[34]  F. Alkmim,et al.  Palaeoproterozoic assembly of the São Francisco craton, SE Brazil : new insights from U–Pb titanite and monazite dating. , 2017 .

[35]  J. Moyen,et al.  Post-collisional magmatism: Crustal growth not identified by zircon Hf–O isotopes , 2016 .

[36]  A. Möller,et al.  Tectonic significance of the Meso- to Neoarchean complexes in the basement of the southern Brasília Orogen , 2016 .

[37]  G. Stevens,et al.  Archean crustal evolution in the Southern São Francisco craton, Brazil: Constraints from U-Pb, Lu-Hf and O isotope analyses , 2016 .

[38]  R. Palin,et al.  Partial melting of metabasic rocks and the generation of tonalitic–trondhjemitic–granodioritic (TTG) crust in the Archaean: Constraints from phase equilibrium modelling , 2016 .

[39]  F. Alkmim,et al.  The Archean-Paleoproterozoic evolution of the Quadrilátero Ferrífero (Brasil): Current models and open questions , 2016 .

[40]  C. Lana,et al.  The detrital zircon record of an Archaean convergent basin in the Southern São Francisco Craton, Brazil , 2016 .

[41]  A. Möller,et al.  Paleoproterozoic continental crust generation events at 2.15 and 2.08 Ga in the basement of the southern Brasília Orogen, SE Brazil , 2016 .

[42]  O. Laurent,et al.  A linear Hf isotope-age array despite different granitoid sources and complex Archean geodynamics: Example from the Pietersburg block (South Africa) , 2015 .

[43]  W. Teixeira,et al.  2.17–2.10 Ga plutonic episodes in the Mineiro belt, São Francisco Craton, Brazil: U-Pb ages, geochemical constraints and tectonics , 2015 .

[44]  N. Arndt,et al.  Trace element indiscrimination diagrams , 2015 .

[45]  C. Lana,et al.  The Neoarchean transition between medium- and high-K granitoids : Clues from the Southern São Francisco Craton (Brazil) , 2015 .

[46]  C. Hawkesworth,et al.  Emergence of modern continental crust about 3 billion years ago , 2015 .

[47]  Jianzhou Yang,et al.  The 2.65 Ga A-type granite in the northeastern Yangtze craton: Petrogenesis and geological implications , 2015 .

[48]  R. Trouw,et al.  New evidence of a magmatic arc in the southern Brasília Belt, Brazil: The Serra da Água Limpa batholith (Socorro-Guaxupé Nappe) , 2014 .

[49]  J. Moyen,et al.  The diversity and evolution of late-Archean granitoids: Evidence for the onset of “modern-style” plate tectonics between 3.0 and 2.5 Ga , 2014 .

[50]  J. Blichert‐Toft,et al.  Why Archaean TTG cannot be generated by MORB melting in subduction zones , 2014 .

[51]  J. Moyen,et al.  Contrasting petrogenesis of Mg–K and Fe–K granitoids and implications for post-collisional magmatism: Case study from the Late-Archean Matok pluton (Pietersburg block, South Africa) , 2014 .

[52]  W. Teixeira,et al.  Rhyacian evolution of subvolcanic and metasedimentary rocks of the southern segment of the Mineiro belt, São Francisco Craton, Brazil , 2014 .

[53]  Peter A. Cawood,et al.  Continental growth and the crustal record , 2013 .

[54]  M. Heilbron,et al.  A new interpretation for the interference zone between the southern Brasília belt and the central Ribeira belt, SE Brazil , 2013 .

[55]  J. Paquette,et al.  Juvenile crust formation in the northeastern Kaapvaal Craton at 2.97 Ga—Implications for Archean terrane accretion, and the source of the Pietersburg gold , 2013 .

[56]  R. Armstrong,et al.  The ancestry and magmatic evolution of Archaean TTG rocks of the Quadrilátero Ferrífero province, southeast Brazil. , 2013 .

[57]  T. Andersen,et al.  Neoarchean crustal recycling and mantle metasomatism: Hf–Nd–Pb–O isotope evidence from sanukitoids of the Fennoscandian shield , 2013 .

[58]  J. Moyen,et al.  Differentiation of the late-Archaean sanukitoid series and some implications for crustal growth: Insights from geochemical modelling on the Bulai pluton, Central Limpopo Belt, South Africa , 2013 .

[59]  T. Plank,et al.  Dy/Dy*: Variations Arising from Mantle Sources and Petrogenetic Processes , 2013 .

[60]  J. Moyen,et al.  Forty years of TTG research , 2012 .

[61]  M. Wilson,et al.  The Himalayan leucogranites: Constraints on the nature of their crustal source region and geodynamic setting , 2012 .

[62]  G. Stevens,et al.  Water-present eclogite melting to produce Earth's early felsic crust , 2012 .

[63]  L. Lauri,et al.  Neoarchean leucogranitoids of the Kianta Complex, Karelian Province, Finland: Source characteristics and processes responsible for the observed heterogeneity , 2012 .

[64]  A. Hickman Review of the Pilbara Craton and Fortescue Basin, Western Australia: Crustal evolution providing environments for early life , 2012 .

[65]  M. Basei,et al.  Orogen migration and tectonic setting of the Andrelândia Nappe system: An Ediacaran western Gondwana collage, south of São Francisco craton , 2011 .

[66]  M. Brown,et al.  When the Continental Crust Melts , 2011 .

[67]  J. Moyen,et al.  Geochemistry and petrogenesis of high-K “sanukitoids” from the Bulai pluton, Central Limpopo Belt, South Africa: Implications for geodynamic changes at the Archaean–Proterozoic boundary , 2011 .

[68]  J. Moyen The composite Archaean grey gneisses: Petrological significance, and evidence for a non-unique tectonic setting for Archaean crustal growth , 2011 .

[69]  Richard C. Aster,et al.  Episodic zircon age spectra of orogenic granitoids: The supercontinent connection and continental growth , 2010 .

[70]  J. Halla,et al.  Discrimination and origin of the sanukitoid series: Geochemical constraints from the Neoarchean western Karelian Province (Finland) , 2010 .

[71]  W. Teixeira,et al.  Rhyacian (2.23–2.20 Ga) juvenile accretion in the southern São Francisco craton, Brazil: Geochemical and isotopic evidence from the Serrinha magmatic suite, Mineiro belt , 2010 .

[72]  M. V. Kranendonk,et al.  Formation of Paleoarchean continental crust through infracrustal melting of enriched basalt , 2009 .

[73]  J. Moyen,et al.  The sanukitoid series: magmatism at the Archaean–Proterozoic transition , 2009, Earth and Environmental Science Transactions of the Royal Society of Edinburgh.

[74]  H. Rollinson,et al.  Petrology of a Late Archaean, Highly Potassic, Sanukitoid Pluton from the Baltic Shield: Insights into Late Archaean Mantle Metasomatism , 2008 .

[75]  O. Baltazar,et al.  Lithofacies associations and structural evolution of the Archean Rio das Velhas greenstone belt, Quadrilátero Ferrífero, Brazil: A review of the setting of gold deposits , 2007 .

[76]  Luiz Carlos da Silva,et al.  Evolution of polycyclic basement complexes in the Araçuaí Orogen, based on U–Pb SHRIMP data: Implications for Brazil–Africa links in Paleoproterozoic time , 2007 .

[77]  J. M. Watkins,et al.  Archaean TTGs as sources of younger granitic magmas: melting of sodic metatonalites at 0.6–1.2 GPa , 2007 .

[78]  R. Dall’Agnol,et al.  Oxidized, magnetite-series, rapakivi-type granites of Carajás, Brazil: Implications for classification and petrogenesis of A-type granites , 2007 .

[79]  R. Capdevila,et al.  2.61 Ga potassic granites and crustal reworking in the western Dharwar craton, southern India: Tectonic, geochronologic and geochemical constraints , 2006 .

[80]  J. Frantz,et al.  Provenance and age delimitation of Quadrilátero Ferrífero sandstones based on zircon U-Pb isotopes , 2006 .

[81]  R. Krymsky,et al.  Geology, geochemistry, and U–Pb geochronology of the Archean (2.74 Ga) Serra do Rabo granite stocks, Carajás Metallogenetic Province, northern Brazil , 2006 .

[82]  E. Dantas,et al.  Age of felsic volcanism and the role of ancient continental crust in the evolution of the Neoarchean Rio das Velhas Greenstone belt (Quadrilátero Ferrífero, Brazil): U–Pb zircon dating of volcaniclastic graywackes , 2005 .

[83]  F. Bussy,et al.  Insights into shallow magmatic processes in large silicic magma bodies: the trace element record in the Fish Canyon magma body, Colorado , 2005 .

[84]  R. Dall’Agnol,et al.  Petrogenesis of the Paleoproterozoic rapakivi A-type granites of the Archean Carajás metallogenic province, Brazil , 2005 .

[85]  A. Glazner,et al.  Voluminous granitic magmas from common basaltic sources , 2005 .

[86]  A. P. Douce,et al.  Vapor-Absent Melting of Tonalite at 15–32 kbar , 2004 .

[87]  A. Castro The source of granites: inferences from the Lewisian complex , 2004, Scottish Journal of Geology.

[88]  M. Basei,et al.  U-Pb evidence for late Neoarchean crustal reworking in the Southern São Francisco Craton (Minas Gerais, Brazil) , 2003 .

[89]  M. Norman,et al.  Growth of early continental crust by partial melting of eclogite , 2003, Nature.

[90]  B. Scaillet,et al.  Petrology and geochemistry of the Lyngdal granodiorite (Southern Norway) and the role of fractional crystallisation in the genesis of Proterozoic ferro-potassic A-type granites , 2003 .

[91]  J. Liégeois,et al.  Derivation of the 1.0 - 0.9 Ga ferro-potassic A-type Granitoids of southern Norway by extreme differentiation from basic magmas , 2003 .

[92]  J. Hermann Allanite: thorium and light rare earth element carrier in subducted crust , 2002 .

[93]  M. Tiepolo,et al.  Growth of early continental crust controlled by melting of amphibolite in subduction zones , 2002, Nature.

[94]  L. Lobato,et al.  Brazil's premier gold province. Part I: The tectonic, magmatic, and structural setting of the Archean Rio das Velhas greenstone belt, Quadrilátero Ferrífero , 2001, Mineralium Deposita.

[95]  R. H. Smithies The Archaean tonalite-trondhjemite-granodiorite (TTG) series is not an analogue of Cenozoic adakite , 2000 .

[96]  C. Noce GEOCHRONOLOGY OF THE QUADRILÁTERO FERRÍFERO: A REVIEW , 2000 .

[97]  M. Norman,et al.  Reaction between slab-derived melts and peridotite in the mantle wedge: experimental constraints at 3.8 GPa , 1999 .

[98]  S. Marshak,et al.  Transamazonian orogeny in the Southern São Francisco craton region, Minas Gerais, Brazil : evidence for paleoproterozoic collision and collapse in the Quadrilátero Ferrı́fero. , 1998 .

[99]  Kei Sato,et al.  Polyphase Archean evolution in the Campo Belo metamorphic complex, Southern São Francisco Craton, Brazil: SHRIMP U-Pb zircon evidence , 1998 .

[100]  A. P. Douce,et al.  Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids , 1997 .

[101]  B. Frost,et al.  Reduced rapakivi-type granites: The tholeiite connection , 1997 .

[102]  H. Seck,et al.  Partial fusion of basic granulites at 5 to 15 kbar: implications for the origin of TTG magmas , 1997 .

[103]  P. N. Taylor,et al.  Pb, Sr and Nd isotope constraints on the Archaean evolution of gneissic-granitoid complexes in the southern São Francisco Craton, Brazil , 1996 .

[104]  K. Winther An experimentally based model for the origin of tonalitic and trondhjemitic melts , 1996 .

[105]  E. Watson,et al.  Dehydration melting of metabasalt at 8-32 kbar : Implications for continental growth and crust-mantle recycling , 1995 .

[106]  J. Beard,et al.  Dehydration-melting of Biotite Gneiss and Quartz Amphibolite from 3 to 15 kbar , 1995 .

[107]  W. McDonough,et al.  The composition of the Earth , 1995 .

[108]  G. Lofgren,et al.  Partial melting of apatite‐bearing charnockite, granulite, and diorite: Melt compositions, restite mineralogy, and petrologic implications , 1994 .

[109]  T. Dunn,et al.  Dehydration melting of a basaltic composition amphibolite at 1.5 and 2.0 GPa: implications for the origin of adakites , 1994 .

[110]  P. Wyllie,et al.  Dehydration-melting of amphibolite at 10 kbar: the effects of temperature and time , 1994 .

[111]  K. P. Skjerlie,et al.  Fluid-Absent Melting Behavior of an F-Rich Tonalitic Gneiss at Mid-Crustal Pressures: Implications for the Generation of Anorogenic Granites , 1993 .

[112]  N. Machado,et al.  U-Pb Geochronology of Archean magmatism and Proterozoic metamorphism in the Quadrilátero Ferrífero, southern São Francisco craton, Brazil , 1992 .

[113]  G. Eby Chemical subdivision of the A-type granitoids:Petrogenetic and tectonic implications , 1992 .

[114]  K. P. Skjerlie,et al.  Vapor-absent melting at 10 kbar of a biotite- and amphibole-bearing tonalitic gneiss: Implications for the generation of A-type granites , 1992 .

[115]  E. Watson,et al.  Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites , 1991 .

[116]  G. Lofgren,et al.  Dehydration Melting and Water-Saturated Melting of Basaltic and Andesitic Greenstones and Amphibolites at 1, 3, and 6. 9 kb , 1991 .

[117]  H. Martin Petrogenesis of Archaean Trondhjemites, Tonalites, and Granodiorites from Eastern Finland: Major and Trace Element Geochemistry , 1987 .

[118]  H. Martin Effect of steeper Archean geothermal gradient on geochemistry of subduction-zone magmas , 1986 .

[119]  G. Hanson,et al.  Mantle-derived Archaean monozodiorites and trachyandesites , 1984, Nature.

[120]  Mariana Brando Soares,et al.  The development of a Meso- to Neoarchean rifting-convergence-collision-collapse cycle over an ancient thickened protocontinent in the south São Francisco craton, Brazil , 2020 .

[121]  J. Bédard Stagnant lids and mantle overturns: Implications for Archaean tectonics, magmagenesis, crustal growth, mantle evolution, and the start of plate tectonics , 2018 .

[122]  W. Teixeira,et al.  Nature and Evolution of the Archean Crust of the São Francisco Craton , 2017 .

[123]  J. Santos,et al.  A juvenile accretion episode (2.35–2.32 Ga) in the Mineiro belt and its role to the Minas accretionary orogeny: Zircon U–Pb–Hf and geochemical evidences , 2015 .

[124]  V. Morra,et al.  Trace-element partitioning between plagioclase, alkali feldspar, Ti-magnetite, biotite, apatite, and evolved potassic liquids from Campi Flegrei (Southern Italy) , 2015 .

[125]  G. Stevens,et al.  Stabilization of the southern portion of the São Francisco craton, SE Brazil, through a long-lived period of potassic magmatism , 2013 .

[126]  B. Frost,et al.  On Ferroan (A-type) Granitoids: their Compositional Variability and Modes of Origin , 2011 .

[127]  M. Pimentel,et al.  Tectonic evolution of the Brasília Belt, Central Brazil, and early assembly of Gondwana , 2008 .

[128]  F. J. Baars,et al.  GENETICALLY DIVERSE BASALT GEOCHEMICAL SIGNATURES DEVELOPED IN THE RIO DAS VELHAS GREENSTONE BELT, QUADRILÁTERO FERRÍFERO, MINAS GERAIS, BRAZIL , 2000 .

[129]  N. Machado,et al.  U-Pb geochronology of gneisses and granitoids in the quadrilátero Ferrífero (southern São Francisco Craton): age constraints for Archean and Paleoproterozoic magmatism and metamorphism , 1998 .

[130]  A. P. Douce,et al.  Melting of Crustal Rocks During Continental Collision and Subduction , 1998 .