A specific member of the ATF transcription factor family can mediate transcription activation by the adenovirus E1a protein

[1]  R. Kingston,et al.  Induction of a cellular enzyme for energy metabolism by transforming domains of adenovirus E1a , 1990, Molecular and cellular biology.

[2]  P. Mitchell,et al.  Transactivation by the hepatitis B virus X protein depends on AP-2 and other transcription factors , 1990, Nature.

[3]  M. Karin,et al.  Jun-B differs in its biological properties from, and is a negative regulator of, c-Jun , 1989, Cell.

[4]  J. Minna,et al.  jun-B inhibits and c-fos stimulates the transforming and trans-activating activities of c-jun , 1989, Cell.

[5]  Tsonwin Hai,et al.  Transcription factor ATF cDNA clones: an extensive family of leucine zipper proteins able to selectively form DNA-binding heterodimers. , 1989, Genes & development.

[6]  M. Montminy,et al.  Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine 133 , 1989, Cell.

[7]  W. Herr,et al.  The Oct-1 homoeodomain directs formation of a multiprotein-DNA complex with the HSV transactivator VP16 , 1989, Nature.

[8]  M. Ptashne,et al.  A vector for expressing GAL4(1-147) fusions in mammalian cells. , 1989, Nucleic acids research.

[9]  R. Tjian,et al.  Transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins. , 1989, Science.

[10]  M. Yoshida,et al.  Leucine zipper structure of the protein CRE‐BP1 binding to the cyclic AMP response element in brain. , 1989, The EMBO journal.

[11]  J. Workman,et al.  Transcriptionally active immediate-early protein of pseudorabies virus binds to specific sites on class II gene promoters , 1989, Journal of virology.

[12]  Michael R. Green,et al.  Transcription activation by the adenovirus E1a protein , 1989, Nature.

[13]  W. Biggs,et al.  A cluster of phosphorylation sites on the cyclic AMP-regulated nuclear factor CREB predicted by its sequence , 1989, Nature.

[14]  E. Harlow,et al.  Cellular targets for transformation by the adenovirus E1A proteins , 1989, Cell.

[15]  T. Meyer,et al.  Cyclic AMP-responsive DNA-binding protein: structure based on a cloned placental cDNA. , 1988, Science.

[16]  M. Ptashne How eukaryotic transcriptional activators work , 1988, Nature.

[17]  Jun Ma,et al.  GAL4-VP16 is an unusually potent transcriptional activator , 1988, Nature.

[18]  R. Roeder,et al.  A herpesvirus trans-activating protein interacts with transcription factor OTF-1 and other cellular proteins. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[19]  J. Culp,et al.  The 289-amino acid E1A protein of adenovirus binds zinc in a region that is important for trans-activation. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[20]  P. Re,et al.  A nuclear factor is required for transactivation of HTLV-I gene expression. , 1988 .

[21]  M. Montminy,et al.  Phosphorylation-induced binding and transcriptional efficacy of nuclear factor CREB , 1988, Nature.

[22]  Stephen H. Friend,et al.  Association between an oncogene and an anti-oncogene: the adenovirus E1A proteins bind to the retinoblastoma gene product , 1988, Nature.

[23]  S. McKnight,et al.  Functional dissection of VP16, the trans-activator of herpes simplex virus immediate early gene expression. , 1988, Genes & development.

[24]  Young-Sun Lin,et al.  Interaction of a common cellular transcription factor, ATF, with regulatory elements in both E1a- and cyclic AMP-inducible promoters. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[25]  S. J. Flint,et al.  DNA‐binding properties of an adenovirus 289R E1A protein. , 1988, The EMBO journal.

[26]  G. Chinnadurai,et al.  An N-terminal region of adenovirus E1a essential for cell transformation and induction of an epithelial cell growth factor. , 1988, Oncogene.

[27]  H. Ruley,et al.  Two regions of the adenovirus early region 1A proteins are required for transformation , 1988, Journal of virology.

[28]  J. Lillie,et al.  Functional domains of adenovirus type 5 E1a proteins , 1987, Cell.

[29]  J. Nevins,et al.  Selective induction of human heat shock gene transcription by the adenovirus E1A gene products, including the 12S E1A product , 1987, Molecular and cellular biology.

[30]  N. Jones,et al.  Mutational analysis of the adenovirus E1a gene: the role of transcriptional regulation in transformation. , 1987, The EMBO journal.

[31]  K. A. Lee,et al.  A cellular transcription factor E4F1 interacts with an E1a‐inducible enhancer and mediates constitutive enhancer function in vitro. , 1987, The EMBO journal.

[32]  R. Roberts,et al.  Different functional domains of the adenovirus E1A gene are involved in regulation of host cell cycle products , 1987, Molecular and cellular biology.

[33]  E. Moran,et al.  Multiple functional domains in the adenovirus E1A gene , 1987, Cell.

[34]  M. Perricaudet,et al.  The E4 promoter of adenovirus type 2 contains an E1A dependent cis-acting element. , 1986, Nucleic acids research.

[35]  M. Mathews,et al.  Identification of separate domains in the adenovirus E1A gene for immortalization activity and the activation of virus early genes , 1986, Molecular and cellular biology.

[36]  J. Lillie,et al.  An adenovirus E1a protein region required for transformation and transcriptional repression , 1986, Cell.

[37]  M. Beato,et al.  The hormone regulatory element of mouse mammary tumour virus mediates progesterone induction. , 1986, The EMBO journal.

[38]  W. Rutter,et al.  Replacement of insulin receptor tyrosine residues 1162 and 1163 compromises insulin-stimulated kinase activity and uptake of 2-deoxyglucose , 1986, Cell.

[39]  B R Franza,et al.  Association of adenovirus early-region 1A proteins with cellular polypeptides , 1986, Molecular and cellular biology.

[40]  K. Maruyama,et al.  Adenovirus E1A coding sequences that enable ras and pmt oncogenes to transform cultured primary cells , 1986, Molecular and cellular biology.

[41]  P. Branton,et al.  Detection of cellular proteins associated with human adenovirus type 5 early region 1A polypeptides. , 1985, Virology.

[42]  N. Jones,et al.  E1A 13S and 12S mRNA products made in Escherichia coli both function as nucleus-localized transcription activators but do not directly bind DNA , 1985, Molecular and cellular biology.

[43]  M. Perricaudet,et al.  The E4 transcriptional unit of Ad2: far upstream sequences are required for its transactivation by E1A. , 1984, Nucleic acids research.

[44]  U. Pettersson,et al.  Splicing of adenovirus 2 early region 1A mRNAs is non-sequential. , 1983, Journal of molecular biology.

[45]  B. Howard,et al.  Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells , 1982, Molecular and cellular biology.

[46]  M. Wigler,et al.  Biochemical transfer of single-copy eucaryotic genes using total cellular DNA as donor , 1978, Cell.

[47]  J. Flint,et al.  Adenovirus E1A protein paradigm viral transactivator. , 1989, Annual review of genetics.

[48]  A. Berk Adenovirus promoters and E1A transactivation. , 1986, Annual review of genetics.

[49]  E. Ziff,et al.  Vector expression of adenovirus type 5 E1a proteins: evidence for E1a autoregulation. , 1985, Molecular and cellular biology.