Light–matter interaction in photonic crystal slabs

A theoretical treatment of waveguide‐embedded photonic crystals based on a guided‐mode expansion method is reviewed. The following issues are discussed: (i) a formulation of the method for calculating photonic‐mode dispersion and intrinsic losses due to out‐of‐plane diffraction, (ii) modelling of disorder‐induced losses due to fabrication imperfections, and (iii) a quantum‐mechanical treatment of radiation‐matter interaction, with application to exciton‐polaritons in photonic crystal slabs. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

[1]  Thomas F. Krauss,et al.  Low-loss propagation in photonic crystal waveguides , 2006 .

[2]  Henri Benisty,et al.  Achievement of ultrahigh quality factors in GaAs photonic crystal membrane nanocavity , 2006 .

[3]  C. Koos,et al.  Radiation Modes and Roughness Loss in High Index-Contrast Waveguides , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[4]  M. Atatüre,et al.  Quantum nature of a strongly coupled single quantum dot–cavity system , 2006, Nature.

[5]  V. Savona,et al.  Bose–Einstein condensation of exciton polaritons , 2006, Nature.

[6]  D. Gerace,et al.  Photonic-crystal slabs with a triangular lattice of triangular holes investigated using a guided-mode expansion method , 2006, 0706.0395.

[7]  Lucio Claudio Andreani,et al.  Effects of disorder on propagation losses and cavity Q-factors in photonic crystal slabs , 2005 .

[8]  D. Bouwmeester,et al.  Self-tuned quantum dot gain in photonic crystal lasers. , 2005, Physical review letters.

[9]  Masaya Notomi,et al.  Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs , 2005 .

[10]  Masaya Notomi,et al.  All-optical switches on a silicon chip realized using photonic crystal nanocavities , 2005 .

[11]  M. Galli,et al.  Single-mode versus multimode behavior in silicon photonic crystal waveguides measured by attenuated total reflectance , 2005 .

[12]  L. Andreani,et al.  Exciton‐polaritons and nanoscale cavities in photonic crystal slabs , 2005 .

[13]  M. Soljačić,et al.  Roughness losses and volume-current methods in photonic-crystal waveguides , 2005 .

[14]  L. Andreani,et al.  Low-loss guided modes in photonic crystal waveguides. , 2005, Optics express.

[15]  S. Hughes Quantum emission dynamics from a single quantum dot in a planar photonic crystal nanocavity. , 2005, Optics letters.

[16]  Y. Vlasov,et al.  Mapping the optical properties of slab-type two-dimensional photonic crystal waveguides , 2005, physics/0504132.

[17]  Masaya Notomi,et al.  Optical bistable switching action of Si high-Q photonic-crystal nanocavities. , 2005, Optics express.

[18]  T. Asano,et al.  Ultra-high-Q photonic double-heterostructure nanocavity , 2005 .

[19]  P. Lalanne,et al.  Slow-wave effect and mode-profile matching in photonic crystal microcavities , 2005, cond-mat/0502664.

[20]  L. Andreani,et al.  Strong exciton-light coupling in photonic crystal nanocavities , 2005 .

[21]  Jeff F. Young,et al.  Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity. , 2005, Physical review letters.

[22]  G. Rupper,et al.  Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity , 2004, Nature.

[23]  Hidehiko Kamada,et al.  Single-quantum-dot strong coupling in a semiconductor photonic crystal nanocavity side coupled to a waveguide , 2004 .

[24]  Lucio Claudio Andreani,et al.  Gap maps, diffraction losses, and exciton–polaritons in photonic crystal slabs , 2004 .

[25]  Lucio Claudio Andreani,et al.  Disorder-induced losses in photonic crystal waveguides with line defects. , 2004, Optics letters.

[26]  M. Notomi,et al.  Waveguides, resonators and their coupled elements in photonic crystal slabs. , 2004, Optics express.

[27]  L. Andreani,et al.  Quantum theory of photonic crystal polaritons , 2004, cond-mat/0402246.

[28]  T. Asano,et al.  High-Q photonic nanocavity in a two-dimensional photonic crystal , 2003, Nature.

[29]  P. Lalanne,et al.  Accurate modeling of line-defect photonic crystal waveguides , 2003, IEEE Photonics Technology Letters.

[30]  L. Andreani,et al.  Intrinsic diffraction losses in photonic crystal waveguides with line defects , 2003 .

[31]  Lucio Claudio Andreani,et al.  Photonic bands and gap maps in a photonic crystal slab , 2002 .

[32]  Philippe Lalanne,et al.  Electromagnetic analysis of photonic crystal waveguides operating above the light cone , 2002 .

[33]  J. Bloch,et al.  High-temperature ultrafast polariton parametric amplification in semiconductor microcavities , 2001, Nature.

[34]  Kazuaki Sakoda,et al.  Nearly free-photon approximation for two-dimensional photonic crystal slabs , 2001 .

[35]  T. Ishihara,et al.  Polariton Effect in Distributed Feedback Microcavities , 2001 .

[36]  M. S. Skolnick,et al.  Angle-resonant stimulated polariton amplifier , 2000, Physical review letters.

[37]  Jean-Michel Gérard,et al.  Strong-coupling regime for quantum boxes in pillar microcavities: Theory , 1999 .

[38]  Stephan W Koch,et al.  Nonlinear optics of normal-mode-coupling semiconductor microcavities , 1999 .

[39]  M. S. Skolnick,et al.  Strong coupling phenomena in quantum microcavity structures , 1998 .

[40]  Teruya Ishihara,et al.  Tunable polariton absorption of distributed feedback microcavities at room temperature , 1998 .

[41]  L. Andreani,et al.  Crossover from strong to weak confinement for excitons in shallow or narrow quantum wells , 1997 .

[42]  Stanley,et al.  Measurement of cavity-polariton dispersion curve from angle resolved photoluminescence experiments. , 1994, Physical review letters.

[43]  C. Weisbuch,et al.  Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. , 1992, Physical review letters.

[44]  R. Lathe Phd by thesis , 1988, Nature.

[45]  J. Hopfield a Quantum-Mechanical Theory of the Contribution of Excitons to the Complex Dielectric Constant of Crystals. , 1958 .

[46]  C.J. Railton,et al.  Calculation of losses in 2-D photonic Crystal membrane waveguides using the 3-D FDTD method , 2005, IEEE Photonics Technology Letters.

[47]  B. Deveaud,et al.  Electron and photon confinement in semiconductor nanostructures : Varenna on Como Lake, Villa Monastero, 25 June - 5 July 2002 , 2003 .