Spontaneous chiral symmetry breaking in metamaterials

Spontaneous chiral symmetry breaking underpins a variety of areas such as subatomic physics and biochemistry, and leads to an impressive range of fundamental phenomena. Here we show that this prominent effect is now available in artificial electromagnetic systems, enabled by the advent of magnetoelastic metamaterials where a mechanical degree of freedom leads to a rich variety of strong nonlinear effects such as bistability and self-oscillations. We report spontaneous symmetry breaking in torsional chiral magnetoelastic structures where two or more meta-molecules with opposite handedness are electromagnetically coupled, modifying the system stability. Importantly, we show that chiral symmetry breaking can be found in the stationary response of the system, and the effect is successfully demonstrated in a microwave pump-probe experiment. Such symmetry breaking can lead to a giant nonlinear polarization change, energy localization and mode splitting, which provides a new possibility for creating an artificial phase transition in metamaterials, analogous to that in ferrimagnetic domains.

[1]  Yuri S. Kivshar,et al.  Nonlinear response via intrinsic rotation in metamaterials , 2013 .

[2]  H. Hyuga,et al.  Colloquium: Homochirality: Symmetry breaking in systems driven far from equilibrium , 2013 .

[3]  Boris A. Malomed,et al.  Spontaneous symmetry breaking in a nonlinear double-well structure , 2008, 0810.0859.

[4]  M. Mekata Antiferro-Ferrimagnatic Transition in Triangular Ising Lattice , 1977 .

[5]  Cristobal Viedma,et al.  Chiral symmetry breaking during crystallization: complete chiral purity induced by nonlinear autocatalysis and recycling. , 2004, Physical review letters.

[6]  J. Zasadzinski,et al.  Spontaneous chiral symmetry breaking by achiral molecules in a Langmuir–Blodgett film , 1994, Nature.

[7]  Xiang Zhang,et al.  Subwavelength discrete solitons in nonlinear metamaterials. , 2007, Physical review letters.

[8]  J. R. Schrieffer,et al.  Dynamical Model of Elementary Particles Based on an Analogy with Superconductivity , 2011 .

[9]  P. W. Higgs Broken Symmetries and the Masses of Gauge Bosons , 1964 .

[10]  Mikael Käll,et al.  A bimetallic nanoantenna for directional colour routing , 2011, Nature communications.

[11]  G. Guralnik,et al.  Global Conservation Laws and Massless Particles , 1964 .

[12]  Yu. M. Zinoviev,et al.  Spontaneous Magnetization in the Two-Dimensional Ising Model , 2003 .

[13]  Discrete dissipative localized modes in nonlinear magnetic metamaterials. , 2011, Optics express.

[14]  M. Wegener,et al.  Gold Helix Photonic Metamaterial as Broadband Circular Polarizer , 2009, Science.

[15]  R. Johnsen,et al.  Theory and Experiment , 2010 .

[16]  Yuri S. Kivshar,et al.  Self-oscillations in nonlinear torsional metamaterials , 2013 .

[17]  Nonlinear magnetoinductive waves and domain walls in composite metamaterials , 2005, cond-mat/0501653.

[18]  M. Lapine,et al.  Nonlinearity of a metamaterial arising from diode insertions into resonant conductive elements. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  N. Rosanov,et al.  Knotted solitons in nonlinear magnetic metamaterials. , 2012, Physical review letters.

[20]  Y. Kadoya,et al.  Directional control of light by a nano-optical Yagi–Uda antenna , 2009, 0910.2291.

[21]  Qiaofeng Tan,et al.  Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity , 2013, Light: Science & Applications.

[22]  Karin Rothschild Nonlinearities In Periodic Structures And Metamaterials , 2016 .

[23]  Y. Kivshar,et al.  Nonlinear properties of left-handed metamaterials. , 2003, Physical review letters.

[24]  Katherine Brading,et al.  Symmetry and Symmetry Breaking , 2003 .

[25]  B. A. Malomed,et al.  Spontaneous symmetry breaking in photonic lattices: Theory and experiment , 2004, cond-mat/0412381.

[26]  N I Zheludev,et al.  Asymmetric propagation of electromagnetic waves through a planar chiral structure. , 2006, Physical review letters.

[27]  M. Wegener,et al.  Strong optical activity from twisted-cross photonic metamaterials. , 2009, Optics letters.

[28]  M Eleftheriou,et al.  Discrete breathers in nonlinear magnetic metamaterials. , 2006, Physical review letters.

[29]  S. Wiggins Introduction to Applied Nonlinear Dynamical Systems and Chaos , 1989 .

[30]  Y. Kivshar,et al.  Near-field interaction of twisted split-ring resonators , 2011, 1101.5454.

[31]  M. Vengalattore,et al.  Spontaneous symmetry breaking in a quenched ferromagnetic spinor Bose–Einstein condensate , 2006, Nature.

[32]  Yuri S. Kivshar,et al.  Metamaterials with conformational nonlinearity , 2011, Scientific reports.

[33]  H. Hyuga,et al.  Homochirality: Symmetry Breaking in Systems Driven Far from Equilibrium , 2014 .

[34]  F. Capasso,et al.  Polarization-Controlled Tunable Directional Coupling of Surface Plasmon Polaritons , 2013, Science.

[35]  P. Nordlander,et al.  The Fano resonance in plasmonic nanostructures and metamaterials. , 2010, Nature materials.

[36]  A. K. Azad,et al.  Terahertz metamaterial with asymmetric transmission , 2009, 0908.2524.

[37]  G. W. Nelson,et al.  Chiral-symmetry breaking in nonequilibrium systems , 1983 .

[38]  V Avetisov,et al.  Mirror symmetry breaking at the molecular level. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[39]  Giorgio Volpe,et al.  Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna , 2010, Science.

[40]  F. Simmel,et al.  DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response , 2011, Nature.

[41]  Cheng Sun,et al.  Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures , 2007 .

[42]  N I Zheludev,et al.  Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure. , 2006, Physical review letters.

[43]  Yuri S. Kivshar,et al.  Magnetoelastic metamaterials , 2011, 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC).

[44]  G. Jona-Lasinio,et al.  DYNAMICAL MODEL OF ELEMENTARY PARTICLES BASED ON AN ANALOGY WITH SUPERCONDUCTIVITY. PART II , 1961 .

[45]  The Cms Collaboration Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC , 2012, 1207.7235.

[46]  K. Komarek,et al.  The antiferromagnetic and ferrimagnetic properties of iron selenides with NiAs-type structure , 1978 .

[47]  G. Jona-Lasinio,et al.  Dynamical Model of Elementary Particles Based on an Analogy with Superconductivity. II , 1961 .

[48]  Mikhail Lapine,et al.  Flexible Helices for Nonlinear Metamaterials , 2013, Advanced materials.

[49]  Byung-Gyu Chae,et al.  Memory Metamaterials , 2009, Science.

[50]  M. Wegener,et al.  Circular dichroism of planar chiral magnetic metamaterials. , 2007, Optics letters.

[51]  C. Mirasso,et al.  Chaos synchronization and spontaneous symmetry-breaking in symmetrically delay-coupled semiconductor lasers. , 2001, Physical review letters.

[52]  Yuri S. Kivshar,et al.  Fano Resonances in Nanoscale Structures , 2010 .

[53]  F. Englert,et al.  Broken Symmetry and the Mass of Gauge Vector Mesons , 1964 .

[54]  B A Malomed,et al.  Symmetry breaking in linearly coupled dynamical lattices. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.