Heavy traffic analysis of maximum pressure policies for stochastic processing networks with multiple bottlenecks

A class of open processing networks operating under a maximum pressure policy is considered in the heavy traffic regime. We prove that the diffusion-scaled workload process for a network with several bottleneck resources converges to a semimartingale reflecting Brownian motion (SRBM) living in a polyhedral cone. We also establish a state space collapse result that the queue length process can be lifted from the lower-dimensional workload process.

[1]  J. Michael Harrison,et al.  Heavy traffic resource pooling in parallel‐server systems , 1999, Queueing Syst. Theory Appl..

[2]  J. Michael Harrison,et al.  Brownian Models of Queueing Networks with Heterogeneous Customer Populations , 1988 .

[3]  Maury Bramson,et al.  State space collapse with application to heavy traffic limits for multiclass queueing networks , 1998, Queueing Syst. Theory Appl..

[4]  David D. Yao,et al.  Fundamentals of Queueing Networks , 2001 .

[5]  L. Tassiulas,et al.  Allocation of interdependent resources for maximal throughput , 2000 .

[6]  Richard W. Cottle,et al.  Linear Complementarity Problem. , 1992 .

[7]  Leandros Tassiulas,et al.  Resource Allocation and Cross-Layer Control in Wireless Networks , 2006, Found. Trends Netw..

[8]  J. G. Dai,et al.  Maximum Pressure Policies in Stochastic Processing Networks , 2005, Oper. Res..

[9]  Ronald J. Williams,et al.  Dynamic scheduling of a system with two parallel servers in heavy traffic with resource pooling: asymptotic optimality of a threshold policy , 2001 .

[10]  Hong Chen,et al.  Diffusion Approximations for Some Multiclass Queueing Networks with FIFO Service Disciplines , 2000, Math. Oper. Res..

[11]  J. Harrison Brownian models of open processing networks: canonical representation of workload , 2000 .

[12]  A. Stolyar MaxWeight scheduling in a generalized switch: State space collapse and workload minimization in heavy traffic , 2004 .

[13]  F. Kelly,et al.  Stochastic networks : theory and applications , 1996 .

[14]  S. Fotopoulos Stochastic modeling and analysis of manufacturing systems , 1996 .

[15]  Hong Chen,et al.  Stochastic discrete flow networks : diffusion approximations and bottlenecks , 1991 .

[16]  Ward Whitt,et al.  An Introduction to Stochastic-Process Limits and their Application to Queues , 2002 .

[17]  Jan A. Van Mieghem,et al.  Dynamic Control of Brownian Networks: State Space Collapse and Equivalent Workload Formulations , 1997 .

[18]  Wanyang Dai,et al.  A heavy traffic limit theorem for a class of open queueing networks with finite buffers , 1999, Queueing Syst. Theory Appl..

[19]  S. L. Bell,et al.  Dynamic Scheduling of a Parallel Server System in Heavy Traffic with Complete Resource Pooling: Asymptotic Optimality of a Threshold Policy , 2005 .

[20]  P. Billingsley,et al.  Convergence of Probability Measures , 1969 .

[21]  C. Laws Resource pooling in queueing networks with dynamic routing , 1992, Advances in Applied Probability.

[22]  Leandros Tassiulas,et al.  Dynamic server allocation to parallel queues with randomly varying connectivity , 1993, IEEE Trans. Inf. Theory.

[23]  J. Harrison A broader view of Brownian networks , 2003 .

[24]  J. Dai,et al.  A heavy traffic limit theorem for a class of open queueing networks with finite buffers ∗ , 1999 .

[25]  S. Ethier,et al.  Markov Processes: Characterization and Convergence , 2005 .

[26]  D. McDonald,et al.  Analysis of Communication Networks: Call Centres, Traffic and Performance , 2000 .

[27]  J. George Shanthikumar,et al.  Jackson Network Models of Manufacturing Systems , 1994 .

[28]  J. Dai,et al.  Asymptotic optimality of maximum pressure policies in stochastic processing networks. , 2008, 0901.2451.

[29]  Dimitri P. Bertsekas,et al.  Data Networks , 1986 .

[30]  J. Dai,et al.  Heavy Traffic Limits for Some Queueing Networks , 2001 .

[31]  Alexander L. Stolyar,et al.  Scheduling Flexible Servers with Convex Delay Costs: Heavy-Traffic Optimality of the Generalized cµ-Rule , 2004, Oper. Res..

[32]  Y. Suhov Analytic Methods in Applied Probability: In Memory of Fridrikh Karpelevich , 2002 .

[33]  D. Yao,et al.  Fundamentals of Queueing Networks: Performance, Asymptotics, and Optimization , 2001, IEEE Transactions on Automatic Control.

[34]  Maury Bramson,et al.  Two Workload Properties for Brownian Networks , 2003, Queueing Syst. Theory Appl..

[35]  Ruth J. Williams,et al.  Diffusion approximations for open multiclass queueing networks: sufficient conditions involving state space collapse , 1998, Queueing Syst. Theory Appl..

[36]  D. Iglehart,et al.  Multiple channel queues in heavy traffic. I , 1970, Advances in Applied Probability.

[37]  R. J. Williams,et al.  An invariance principle for semimartingale reflecting Brownian motions in domains with piecewise smooth boundaries. , 2007, 0704.0405.

[38]  Ruth J. Williams,et al.  Existence and Uniqueness of Semimartingale Reflecting Brownian Motions in Convex Polyhedrons , 1996 .

[39]  Leandros Tassiulas,et al.  Adaptive back-pressure congestion control based on local information , 1995, IEEE Trans. Autom. Control..

[40]  S. Sushanth Kumar,et al.  Heavy traffic analysis of open processing networks with complete resource pooling: Asymptotic optimality of discrete review policies , 2005, math/0503477.

[41]  J. Michael Harrison,et al.  Stochastic Networks and Activity Analysis , 2002 .

[42]  Leandros Tassiulas,et al.  Stability properties of constrained queueing systems and scheduling policies for maximum throughput in multihop radio networks , 1990, 29th IEEE Conference on Decision and Control.

[43]  A. Gut Stopped Random Walks: Limit Theorems and Applications , 1987 .

[44]  J. Harrison Heavy traffic analysis of a system with parallel servers: asymptotic optimality of discrete-review policies , 1998 .

[45]  Ruth J. Williams,et al.  An invariance principle for semimartingale reflecting Brownian motions in an orthant , 1998, Queueing Syst. Theory Appl..