Arbitrary-Lagrangian–Eulerian ADER–WENO finite volume schemes with time-accurate local time stepping for hyperbolic conservation laws
暂无分享,去创建一个
[1] Michael Dumbser,et al. Arbitrary-Lagrangian-Eulerian One-Step WENO Finite Volume Schemes on Unstructured Triangular Meshes , 2013, 1302.3076.
[2] Michael Dumbser,et al. Quadrature-free non-oscillatory finite volume schemes on unstructured meshes for nonlinear hyperbolic systems , 2007, J. Comput. Phys..
[3] Bruno Després,et al. A cell-centered Lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension , 2009, J. Comput. Phys..
[4] Michael Dumbser,et al. Very high order PNPM schemes on unstructured meshes for the resistive relativistic MHD equations , 2009, J. Comput. Phys..
[5] Pierre-Henri Maire,et al. A high-order cell-centered Lagrangian scheme for compressible fluid flows in two-dimensional cylindrical geometry , 2009, J. Comput. Phys..
[6] Pavel Váchal,et al. Synchronized flux corrected remapping for ALE methods , 2011 .
[7] Raphaël Loubère,et al. A second-order compatible staggered Lagrangian hydrodynamics scheme using a cell-centered multidimensional approximate Riemann solver , 2010, ICCS.
[8] Michael Dumbser,et al. On Arbitrary-Lagrangian-Eulerian One-Step WENO Schemes for Stiff Hyperbolic Balance Laws , 2012, 1207.6407.
[9] Guglielmo Scovazzi,et al. A geometrically-conservative, synchronized, flux-corrected remap for arbitrary Lagrangian-Eulerian computations with nodal finite elements , 2011, J. Comput. Phys..
[10] Michael Dumbser,et al. ADER Schemes for Nonlinear Systems of Stiff Advection–Diffusion–Reaction Equations , 2011, J. Sci. Comput..
[11] Jérôme Breil,et al. Hybrid remap for multi-material ALE , 2011 .
[12] Manuel Torrilhon,et al. Non-uniform convergence of finite volume schemes for Riemann problems of ideal magnetohydrodynamics , 2003 .
[13] Michael Dumbser,et al. Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems , 2007, J. Comput. Phys..
[14] Boleslaw K. Szymanski,et al. Adaptive Local Refinement with Octree Load Balancing for the Parallel Solution of Three-Dimensional Conservation Laws , 1997, J. Parallel Distributed Comput..
[15] Claus-Dieter Munz,et al. A Discontinuous Galerkin Scheme based on a Space-Time Expansion II. Viscous Flow Equations in Multi Dimensions , 2008, J. Sci. Comput..
[16] Dinshaw S. Balsara,et al. Notes on the Eigensystem of Magnetohydrodynamics , 1996, SIAM J. Appl. Math..
[17] Mikhail Shashkov,et al. A finite volume cell‐centered Lagrangian hydrodynamics approach for solids in general unstructured grids , 2013 .
[18] Claus-Dieter Munz,et al. On Godunov-type schemes for Lagrangian gas dynamics , 1994 .
[19] M. Dumbser,et al. Heterogeneous Domain Decomposition for Computational Aeroacoustics , 2006 .
[20] M. Dumbser,et al. High order space–time adaptive ADER-WENO finite volume schemes for non-conservative hyperbolic systems , 2013, 1304.5408.
[21] Eleuterio F. Toro,et al. Space–time adaptive numerical methods for geophysical applications , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[22] Pierre-Henri Maire,et al. A unified sub‐cell force‐based discretization for cell‐centered Lagrangian hydrodynamics on polygonal grids , 2011 .
[23] Michael Dumbser,et al. Arbitrary high order PNPM schemes on unstructured meshes for the compressible Navier–Stokes equations , 2010 .
[24] Eleuterio F. Toro,et al. ADER: Arbitrary High Order Godunov Approach , 2002, J. Sci. Comput..
[25] Lilia Krivodonova,et al. An efficient local time-stepping scheme for solution of nonlinear conservation laws , 2010, J. Comput. Phys..
[26] Marcus J. Grote,et al. High-order explicit local time-stepping methods for damped wave equations , 2011, J. Comput. Appl. Math..
[27] Chi-Wang Shu,et al. High order conservative Lagrangian schemes with Lax-Wendroff type time discretization for the compressible Euler equations , 2009, J. Comput. Phys..
[28] Bruno Després,et al. Lagrangian Gas Dynamics in Two Dimensions and Lagrangian systems , 2005 .
[29] Antonio Baeza,et al. Adaptive mesh refinement techniques for high‐order shock capturing schemes for multi‐dimensional hydrodynamic simulations , 2006 .
[30] Michael Dumbser,et al. A direct Arbitrary-Lagrangian-Eulerian ADER-WENO finite volume scheme on unstructured tetrahedral meshes for conservative and non-conservative hyperbolic systems in 3D , 2014, J. Comput. Phys..
[31] C. Munz,et al. Hyperbolic divergence cleaning for the MHD equations , 2002 .
[32] Pavel B. Bochev,et al. Fast optimization-based conservative remap of scalar fields through aggregate mass transfer , 2013, J. Comput. Phys..
[33] S. Osher,et al. Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .
[34] Chi-Wang Shu,et al. A cell-centered Lagrangian scheme with the preservation of symmetry and conservation properties for compressible fluid flows in two-dimensional cylindrical geometry , 2010, J. Comput. Phys..
[35] Raimund Bürger,et al. Spectral WENO schemes with Adaptive Mesh Refinement for models of polydisperse sedimentation , 2013 .
[36] Marcus J. Grote,et al. Explicit local time-stepping methods for Maxwell's equations , 2010, J. Comput. Appl. Math..
[37] Michael Dumbser,et al. Finite volume schemes of very high order of accuracy for stiff hyperbolic balance laws , 2008, J. Comput. Phys..
[38] Michael Dumbser,et al. A Simple Extension of the Osher Riemann Solver to Non-conservative Hyperbolic Systems , 2011, J. Sci. Comput..
[39] Eleuterio F. Toro,et al. ADER schemes for three-dimensional non-linear hyperbolic systems , 2005 .
[40] Raphaël Loubère,et al. ReALE: A Reconnection Arbitrary-Lagrangian―Eulerian method in cylindrical geometry , 2011 .
[41] Michael Dumbser,et al. On Universal Osher-Type Schemes for General Nonlinear Hyperbolic Conservation Laws , 2011 .
[42] Rémi Abgrall,et al. A Cell-Centered Lagrangian Scheme for Two-Dimensional Compressible Flow Problems , 2007, SIAM J. Sci. Comput..
[43] M. Dumbser,et al. High-Order Unstructured Lagrangian One-Step WENO Finite Volume Schemes for Non-Conservative Hyperbolic Systems: Applications to Compressible Multi-Phase Flows , 2013, 1304.4816.
[44] Chi-Wang Shu,et al. A high order ENO conservative Lagrangian type scheme for the compressible Euler equations , 2007, J. Comput. Phys..
[45] E. Toro,et al. An arbitrary high-order Discontinuous Galerkin method for elastic waves on unstructured meshes - V. Local time stepping and p-adaptivity , 2007 .
[46] Michael Dumbser,et al. ADER-WENO finite volume schemes with space-time adaptive mesh refinement , 2012, J. Comput. Phys..
[47] Guglielmo Scovazzi,et al. Lagrangian shock hydrodynamics on tetrahedral meshes: A stable and accurate variational multiscale approach , 2012, J. Comput. Phys..
[48] Arne Taube,et al. A high-order discontinuous Galerkin method with time-accurate local time stepping for the Maxwell equations , 2009 .
[49] Pierre-Henri Maire,et al. A high-order one-step sub-cell force-based discretization for cell-centered Lagrangian hydrodynamics on polygonal grids , 2011 .
[50] S.A.E.G.Falle,et al. On the Inadmissibility of Non-evolutionary Shocks , 1999 .
[51] A. Stroud. Approximate calculation of multiple integrals , 1973 .
[52] E. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .
[53] Mikhail J. Shashkov,et al. One-step hybrid remapping algorithm for multi-material arbitrary Lagrangian-Eulerian methods , 2012, J. Comput. Phys..
[54] Claus-Dieter Munz,et al. A Discontinuous Galerkin Scheme Based on a Space–Time Expansion. I. Inviscid Compressible Flow in One Space Dimension , 2007, J. Sci. Comput..
[55] Chi-Wang Shu,et al. Efficient Implementation of Weighted ENO Schemes , 1995 .
[56] Antonio Baeza,et al. Adaptation based on interpolation errors for high order mesh refinement methods applied to conservation laws , 2012 .
[57] Jérôme Breil,et al. Two-step hybrid conservative remapping for multimaterial arbitrary Lagrangian-Eulerian methods , 2011, J. Comput. Phys..