Effects of sucrose addition on the rheology and microstructure of κ-carrageenan gel

[1]  J. Nečas,et al.  Carrageenan: a review. , 2018 .

[2]  Hongshun Yang,et al.  Nanostructural analysis and textural modification of tilapia fish gelatin affected by gellan and calcium chloride addition , 2017 .

[3]  J. Regenstein,et al.  Confectionery gels: Effects of low calorie sweeteners on the rheological properties and microstructure of fish gelatin , 2017 .

[4]  Lin Li,et al.  Thermoreversible gelation and scaling behavior of Ca2+-induced κ-carrageenan hydrogels , 2016 .

[5]  A. Farahnaky,et al.  Ultrasound assisted-viscosifying of kappa carrageenan without heating , 2016 .

[6]  A. Karim,et al.  Effects of sugars on the gelation kinetics and texture of duck feet gelatin , 2016 .

[7]  A. Altskär,et al.  Impact of solvent quality on the network strength and structure of alginate gels. , 2016, Carbohydrate polymers.

[8]  Lin Li,et al.  Thermoreversible gelation and scaling laws for graphene oxide-filled κ-carrageenan hydrogels , 2016 .

[9]  T. Brenner,et al.  A study on phase separation behavior in kappa/iota carrageenan mixtures by micro DSC, rheological measurements and simulating water and cations migration between phases , 2016 .

[10]  N. Matubayasi,et al.  Gelation of carrageenan: Effects of sugars and polyols , 2016 .

[11]  Duncan J McGillivray,et al.  Nonlinear Behavior of Gelatin Networks Reveals a Hierarchical Structure. , 2016, Biomacromolecules.

[12]  Lin Li,et al.  Rheological Properties and Scaling Laws of κ-Carrageenan in Aqueous Solution , 2015 .

[13]  R. Mezzenga,et al.  Supramolecular chiral self-assembly and supercoiling behavior of carrageenans at varying salt conditions. , 2015, Nanoscale.

[14]  Hongshun Yang,et al.  Effects of salt and sugar addition on the physicochemical properties and nanostructure of fish gelatin , 2015 .

[15]  N. Matubayasi,et al.  Preferential solvation: dividing surface vs excess numbers. , 2014, The journal of physical chemistry. B.

[16]  Gregory N Tew,et al.  SANS study of highly resilient poly(ethylene glycol) hydrogels. , 2014, Soft matter.

[17]  L. Lundin,et al.  Using SAXS to reveal the degree of bundling in the polysaccharide junction zones of microrheologically distinct pectin gels. , 2011, Biomacromolecules.

[18]  Zhen Tong,et al.  Critical behavior at sol–gel transition in gellan gum aqueous solutions with KCl and CaCl2 of different concentrations , 2010 .

[19]  M. Šen,et al.  Determination of critical gelation conditions of κ-carrageenan by viscosimetric and FT-IR analyses , 2010 .

[20]  M. Wilhelm,et al.  Structural and mechanical characterization of κ/ι-hybrid carrageenan gels in potassium salt using Fourier Transform rheology , 2009 .

[21]  Paulo J. A. Ribeiro-Claro,et al.  Identification of selected seaweed polysaccharides (phycocolloids) by vibrational spectroscopy (FTIR-ATR and FT-Raman) , 2009 .

[22]  Ö. Pekcan,et al.  Critical Exponents of Kappa Carrageenan in the Coil-Helix and Helix-Coil Hysteresis Loops , 2009 .

[23]  C. Loret,et al.  Mechanical properties of κ-carrageenan in high concentration of sugar solutions , 2009 .

[24]  Magnus Nydén,et al.  Dendrimer diffusion in kappa-carrageenan gel structures. , 2009, Biomacromolecules.

[25]  Zhen Tong,et al.  Critical exponents and self-similarity for sol-gel transition in aqueous alginate systems induced by in situ release of calcium cations. , 2006, The journal of physical chemistry. B.

[26]  T. Vermonden,et al.  Rheological studies of thermosensitive triblock copolymer hydrogels. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[27]  Zhen Tong,et al.  Critical exponents for sol–gel transition in aqueous alginate solutions induced by cupric cations , 2006 .

[28]  Huaitian Bu,et al.  Rheological properties of pH-induced association and gelation of pectin , 2006 .

[29]  Zhen Tong,et al.  Difference in concentration dependence of relaxation critical exponent N for alginate solutions at sol-gel transition induced by calcium cations. , 2005, Biomacromolecules.

[30]  S. Kasapis,et al.  Further evidence of the changing nature of biopolymer networks in the presence of sugar. , 2005, Carbohydrate research.

[31]  S. Kasapis,et al.  Rubber-to-glass transitions in high sugar/biopolymer mixtures , 2004 .

[32]  A. Kjøniksen,et al.  Characterization of association and gelation of pectin in methanol-water mixtures. , 2003, Biomacromolecules.

[33]  Hiroshi Urakawa,et al.  Structural characteristics of carrageenan gels: temperature and concentration dependence , 2002 .

[34]  Bjørn T. Stokke,et al.  Small-Angle X-ray Scattering and Rheological Characterization of Alginate Gels. 1. Ca-Alginate Gels , 2000 .

[35]  L. Sundelöf,et al.  Gel--sol transition in kappa-carrageenan systems: microviscosity of hydrophobic microdomains, dynamic rheology and molecular conformation. , 1999, International journal of biological macromolecules.

[36]  L. Bromberg Scaling of Rheological Properties of Hydrogels from Associating Polymers , 1998 .

[37]  Y. Aoki,et al.  Rheological images of poly(vinyl chloride) gels. 1. The dependence of sol-gel transition on concentation , 1997 .

[38]  B. T. Stokke,et al.  Small‐angle X‐ray scattering and rheological characterization of alginate gels , 1997 .

[39]  H. Reynaers,et al.  Small-angle X-ray scattering of kappa- and iota-carrageenan in aqueous and in salt solutions. , 1996, International journal of biological macromolecules.

[40]  G. Beaucage Small-Angle Scattering from Polymeric Mass Fractals of Arbitrary Mass-Fractal Dimension , 1996 .

[41]  K. Nishinari,et al.  Effects of sugars and polyols on the gel-sol transition of kappa-carrageenan gels , 1992 .

[42]  K. Nishinari,et al.  .kappa.-Carrageenan gels: effect of sucrose, glucose, urea, and guanidine hydrochloride on the rheological and thermal properties , 1990 .

[43]  M. Muthukumar Screening effect on viscoelasticity near the gel point , 1989 .

[44]  S. Arnott,et al.  The molecular structure of kappa-carrageenan and comparison with iota-carrageenan , 1988 .

[45]  K. Gekko,et al.  Effects of sugars and polyols on the sol-gel transition of k-carrageenan: calorimetric study , 1987 .

[46]  G. Birch,et al.  Relationship between the structure and the properties of carbohydrates in aqueous solutions: sweetness of chlorinated sugars. , 1986, Carbohydrate research.

[47]  P. Belton,et al.  Interaction of group I cations with iota and kappa carrageenans studied by Fourier transform infrared spectroscopy , 1986 .

[48]  H. Henning Winter,et al.  Analysis of Linear Viscoelasticity of a Crosslinking Polymer at the Gel Point , 1986 .

[49]  W. Graessley The Entanglement Concept in Polymer Rheology , 1974 .

[50]  Jack L. Koenig,et al.  Infrared and raman spectroscopy of carbohydrates. : Part II: Normal coordinate analysis of α-D-glucose. , 1972 .

[51]  Jack L. Koenig,et al.  Infrared and raman spectroscopy of carbohydrates : Part I: Identification of OH and CH-related vibrational modes for D-glucose, maltose, cellobiose, and dextran by deuterium-substitution methods , 1971 .

[52]  M. Fixman Radius of Gyration of Polymer Chains , 1962 .

[53]  Sijun Liu,et al.  Scaling law and microstructure of alginate hydrogel. , 2016, Carbohydrate polymers.

[54]  E. Kaler,et al.  Small angle neutron scattering study of sodium dodecyl sulfate micellar growth driven by addition of a hydrotropic salt. , 2003, Journal of Colloid and Interface Science.

[55]  D. Oakenfull SOLVENT STRUCTURE AND GELATION OF POLYSACCHARIDES IN CONCENTRATED SOLUTIONS OF SIMPLE SUGARS , 2000 .

[56]  C. Michon,et al.  Concentration dependence of the critical viscoelastic properties of gelatin at the gel point , 1993 .

[57]  A. Hermansson Rheological and microstructural evidence for transient states during gelation of kappa-carrageenan in the presence of potassium , 1989 .

[58]  O. Glatter,et al.  19 – Small-Angle X-ray Scattering , 1973 .