Small Weakly Universal Turing Machines

We give small universal Turing machines with state-symbol pairs of (6, 2), (3, 3) and (2, 4). These machines are weakly universal, which means that they have an infinitely repeated word to the left of their input and another to the right. They simulate Rule 110 and are currently the smallest known weakly universal Turing machines. Despite their small size these machines are efficient polynomial time simulators of Turing machines.

[1]  Minimal universal turing machines , 1976 .

[2]  John Cocke,et al.  Universality of Tag Systems with P = 2 , 1964, JACM.

[3]  Lutz Priese,et al.  Towards a Precise Characterization of the Complexity of Universal and Nonuniversal Turing Machines , 1979, SIAM J. Comput..

[4]  Gabor T. Herman,et al.  On the time complexity of 2-tag systems and small universal Turing machines , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[5]  Shigeru Watanabe,et al.  5-Symbol 8-State and 5-Symbol 6-State Universal Turing Machines , 1961, JACM.

[6]  Pascal Michel,et al.  Small Turing machines and generalized busy beaver competition , 2004, Theor. Comput. Sci..

[7]  L. M. Pavlotskaya,et al.  Solvability of the halting problem for certain classes of Turing machines , 1973 .

[8]  Turlough Neary,et al.  P-completeness of Cellular Automaton Rule 110 , 2006, ICALP.

[9]  Marvin Minsky,et al.  Size and structure of universal Turing machines using Tag systems , 1962 .

[10]  Turlough Neary,et al.  Small fast universal Turing machines , 2006, Theor. Comput. Sci..

[11]  H. James Hoover,et al.  Limits to Parallel Computation: P-Completeness Theory , 1995 .

[12]  Maurice Margenstern,et al.  On the Optimal Number of Instructions for Universal Turing Machines Connected With a Finite Automaton , 2003, Int. J. Algebra Comput..

[13]  Yurii Rogozhin,et al.  Small Universal Turing Machines , 1996, Theor. Comput. Sci..

[14]  Aaron D. Wyner,et al.  A Universal Turing Machine with Two Internal States , 1993 .

[15]  Claude E. Shannon,et al.  A Universal Turing Machine with Two Internal States , 1956 .

[16]  Maurice Margenstern,et al.  Frontier between decidability and undecidability: a survey , 2000, Theor. Comput. Sci..

[17]  Akihiro Nozaki,et al.  On the notion of universality of Turing machine , 1969, Kybernetika.

[18]  Turlough Neary,et al.  Small universal Turing machines , 2008 .

[19]  Manfred Kudlek,et al.  A Universal Turing Machine with 3 States and 9 Symbols , 2001, Developments in Language Theory.

[20]  Turlough Neary,et al.  The Complexity of Small Universal Turing Machines , 2007, CiE.

[21]  Turlough Neary,et al.  Four Small Universal Turing Machines , 2007, Fundam. Informaticae.

[22]  Stephen Wolfram,et al.  A New Kind of Science , 2003, Artificial Life.

[23]  Claudio Baiocchi,et al.  Three Small Universal Turing Machines , 2001, MCU.

[24]  Turlough Neary,et al.  The complexity of small universal Turing machines: A survey , 2009, Theor. Comput. Sci..

[25]  守屋 悦朗,et al.  J.E.Hopcroft, J.D. Ullman 著, "Introduction to Automata Theory, Languages, and Computation", Addison-Wesley, A5変形版, X+418, \6,670, 1979 , 1980 .

[26]  Turlough Neary,et al.  Small Semi-Weakly Universal Turing Machines , 2007, Fundam. Informaticae.

[27]  Matthew Cook,et al.  Universality in Elementary Cellular Automata , 2004, Complex Syst..

[28]  Manfred Kudlek,et al.  Small Deterministic Turing Machines , 1996, Theor. Comput. Sci..

[29]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .